Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas*

D. B. Schaeffer,¹ W. Fox,¹, ² R. K. Follett,³ G. Fiksel,⁴ C. K. Li,⁵ J. Matteucci,¹ A. Bhattacharjee,¹, ² and K. Germaschewski⁶

¹Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA
²Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
³Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
⁴Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA
⁵Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, USA
⁶Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA

November 2018

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge MA 02139 USA

*Published title. Preprint manuscript title: Particle Velocity Distributions in Developing Magnetized Collisionless Shocks in Laser-Produced Plasmas

Processing of the proton images was funded by the DOE under grant No. DE-FG03-09NA29553. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted.

Submitted to Physical Review Letters
collisionless counter-streaming flows [22].

In this Letter, we present the first laboratory observations of temporally-resolved electron and ion velocity distributions in forming, magnetized collisionless shocks. The distributions were acquired through Thomson scattering of a probe laser that diagnosed the interaction of a laser-driven, supersonic piston plasma expanding through a magnetized ambient plasma. Spatially-resolved 2D proton radiography images of the magnetic field were also acquired. We directly observe the interplay between the piston and ambient plasmas in the initial stages of shock formation, including the acceleration of ambient ions and the pile up of piston ions behind the resulting compressed magnetic field. These effects are found to depend critically on the density of the ambient plasma and the presence of the background magnetic field. The results build on an experimental platform that has studied high-Mach-number magnetized collisionless shocks [15, 23], laser-driven magnetic reconnection [24], and Weibel-mediated shocks [25].

Setup. The experiments were carried out on the OMEGA laser facility [26] and are shown schematically
Two drive beams (1053 nm, 350 J, 2 ns) incident on the volume in front of the piston target and mixes with the shown previously [23, 24], over 12 ns this plasma fills the plasma that expands through the background field. As 100 J, 1 ns) incident on the ambient target creates a and stacked coil structure. A precursor beam (1053 nm, plasma that expands through the ambient target creates a uniform across the target surface due to the elongated X-

FIG. 1: (a) Experimental setup. A background magnetic field primarily directed along y is pre-imposed using current-carrying copper wires. A precursor laser ablates a CH target to create a magnetized ambient plasma. Two drive beams then generate a CH piston plasma that expands through the ambient plasma to drive a shock. Temperature, density, and velocity are diagnosed in the x direction using Thomson scattering with a 2ω probe beam. 20 beams (not shown) compress a DHe3 backlighter capsule to generate mono-energetic protons that probe the magnetic field structure in the x-y plane. (b) Top-down schematic view of the setup and Thomson scattering geometry.

in Fig. 1. The experiment utilizes two planar CH targets and a set of copper coils to generate a magnetic field. The “piston” target is attached to the coils 3 mm from target chamber center (TCC) and defines the experimental coordinate system, with x along the target normal, y parallel to the long edge, and z parallel to the short edge. A second “ambient” target is centered at TCC along x and offset 5 mm diagonally at a 45° angle. A background magnetic field is generated by the coils [27]. The initial field \(B_y \) has a peak strength of 10 T near the piston target and falls off like 1/r along x, while it is nearly uniform across the target surface due to the elongated and stacked coil structure. A precursor beam (1053 nm, 100 J, 1 ns) incident on the ambient target creates a plasma that expands through the background field. As shown previously [23, 24], over 12 ns this plasma fills the volume in front of the piston target and mixes with the background field to create a magnetized ambient plasma. Two drive beams (1053 nm, 350 J, 2 ns) incident on the piston target at time \(t_0 \) then generate a supersonic piston plasma, which expands through the ambient plasma.

The primary diagnostic was temporally-resolved Thomson scattering using a 2ω probe beam (527 nm, 30-50 J, 2 ns) [28]. Scattered light from the probe beam was collected from a localized volume \((50 \times 50 \times 70 \, \mu m^3)\) such that the probed wavevector \(k = k_i - k_s \) was directed along the piston expansion direction (i.e. along \(x \)), where \(k_i \) is the incident wavevector and \(k_s \) is the scattered wavevector (Fig. 1b). The scattering angle was 63°, yielding a scattering parameter \(\alpha = 1/k_{s}a_{de} \approx 1.5 \) for typical plasma parameters and placing the scattered signal in the collective regime. The collected light was split along two beam paths. One path measured light scattered from electron plasma waves (EPW), which can provide information on the electron density and temperature. The other path measured light scattered from ion acoustic waves (IAW), which can also diagnose the electron temperature, as well as the ion temperature and flow speed. The EPW and IAW signals were passed through spectrometers with wavelength resolutions of 0.5 and 0.05 nm, respectively, and imaged onto streak cameras with a temporal resolution of 50 ps. The location of the probed plasma ranged from 3 to 4 mm from the piston target along \(x \). The scattered signal was streaked for 2 ns starting 3 to 4.5 ns after \(t_0 \).

The magnetic field structure was measured using proton radiography [29]. A 420 µm diameter glass capsule filled with DHe3 was placed 10 mm from TCC along \(z \) and irradiated by 20 beams at \(t_0 + 3 \) ns. The resulting implosion produced 3 and 14.7 MeV protons as fusion by-products, which passed through the plasma and were collected on CR-39 plates placed 154 mm from TCC (geometric magnification \(M = 16.4 \)). The protons leave tracks in the CR-39 that correspond to a 2D map of proton deflections in the x-y plane, which can be converted to path-integrated magnetic field amplitudes.

Results. Fig. 2 shows streaked IAW spectra taken under three experimental configurations: (a) a magnetized piston-ambient interaction, (b) an unmagnetized piston-ambient interaction, and (c) a magnetized piston expansion. The EPW spectrum corresponding to Fig. 2a is shown in Fig. 3a, and a proton radiograph taken under the same conditions is shown in Fig. 3c. The ambient plasma was measured at TCC using Thomson scattering in the absence of a piston plasma over the same time intervals as in Fig. 2. The measurements yielded a time-averaged mean electron density \(n_{e0} = 0.9 \pm 0.2 \times 10^{18} \, \text{cm}^{-3} \) and temperature \(T_{e0} = 40 \pm 10 \, \text{eV} \) [30].

The spectra show qualitative signatures of a developing magnetized collisionless shock, and can be divided into four distinct regions in the IAW spectra, labeled I-IV in Fig. 2a. Region I consists of piston ions that are streaming through the ambient plasma (region II) but largely unaffected by the magnetic field. A key step in piston-driven shock formation is the sweeping up of ambient plasma [31] and the resulting compression of the magnetic field. The increased field then causes a pile up of piston plasma and deformation of the piston flow. Both the ambient ion acceleration and piston deformation are seen in region III, which also corresponds to the peak in the EPW spectra in Fig. 3a. Eventually, most of the ambient ions not participating in shock formation are swept up by the piston, which results in the merging of the piston and ambient plasmas in region IV. Without a background magnetic field (Fig. 2b), no ion pile up or flow deformation is observed, though the ambient ions are still eventually swept up. Likewise, Fig. 2c shows that with only a magnetized piston plasma, no shock forms. These last two cases indicate that the presence of both the ambient plasma and background field is critical to shock
FIG. 2: IAW spectra of piston-ambient interactions under three experimental conditions: (a) magnetized ambient plasma, (b) unmagnetized ambient plasma, and (c) no ambient plasma. Data in (a) and (c) was taken at $x = 3$ mm (TCC), while (b) was taken at $x = 4$ mm. The marks at the bottom of (a) are timing fiducials. (d) Simulated ion velocity space in conditions similar to (a), with velocity relative to the piston speed and time relative to the upstream gyrofrequency. Regions of interest are labeled with Roman numerals.

FIG. 3: (a) Streaked Thomson-scattered spectrum of the EPW feature taken at TCC, corresponding to Fig. 2a. (b) Two example profiles at time $t_0 + 3.85$ ns (green) and $t_0 + 4.15$ ns (red), along with best fits (black). (c) Proton radiography image taken at time $t_0 + 3.75$ ns using 14.7 MeV protons. (d) Proton intensity (red squares) taken from the red region in (c), normalized to the mean intensity, and the associated reconstructed path-integrated magnetic field $\int B_y dz$ (black). Also shown is the normalized proton intensity (green dashed) forwarded-modeled from a 2D synthetic magnetic field $B_y (x, z)$, which has the dashed blue profile at $z = 0$. The model uncertainties are shown as shaded regions.

formation. Lastly, Fig. 2d is the x component of the ion velocity distribution in the Thomson-scattering volume as a function of time from a 1D psc [32, 33] particle-in-cell simulation under conditions similar to Fig. 2a. The four regions of Fig. 2a are clearly visible in the simulation and show that there is strong correspondence between the velocity distributions and the Thomson-scattered spectra. There is an additional intriguing feature in region V: the formation of a shock in the ambient H plasma just ahead of the piston pile up. We do not directly observe H shock features in the spectra, though calculations indicate that the H ion acoustic waves would be heavily Landau damped relative to the C waves.

Fig. 3c shows a 14.7 MeV proton image taken at $t_0 + 3.75$ ns under the same conditions as Fig. 2a. The magnetic cavity created by the piston can be clearly seen outlined by white, high-proton-fluence and dark, low-proton-fluence ribbons that result from the deflection of protons by the B_y magnetic field. The variation between dark and light fluence represents a large gradient in (path-integrated) magnetic field strength associated with the forming shock. This can be seen in Fig. 3d, where we reconstruct the line-integrated magnetic field $\int B_y dz$ along a 1D profile through TCC by inverting the corresponding proton fluence profile (red squares). To unfold the original field, we assume a form for $B_y (x, z)$ and forward model a synthetic proton fluence. By optimizing the parameters of the model, we find good agreement between the data and the synthetic proton fluence (green line). At $z = 0$, corresponding to the location of the Thomson scattering measurements, the model field $B_y (x, 0)$ (blue line) has a peak value $B_{y,\text{peak}} = 35 \pm 3$ T at $x_{\text{peak}} = 2.98 \pm 0.05$ mm, though the upstream value $B_{y0} = 6 \pm 3$ T is not well constrained. Here, the uncertainties are derived by comparing best fits at different fixed upstream values. Similar results are obtained from the 3 MeV proton image, indicating that the protons are primarily deflected by magnetic fields rather than electric fields.

We can further quantify the Thomson-scattered spectra in Figs. 2 & 3 by iteratively fitting the data with a spectral model of the scattered power [28]. Time-resolved parameters can then be extracted, including electron density n_e and the x-component of the electron temperature T_{ex} and ion flow speed v_x. An example EPW spectrum and fit is shown in Fig. 3b. To perform error analysis, we employ a Monte Carlo approach in which the extracted plasma parameters represent the mean value
spectra. In the region of ion pile up, the magnetized triton density and temperature extracted from the EPW free-streaming expansion (ton ions show no deceleration and are consistent with a the piston plasma. In the unmagnetized case, the piston ions exhibit a rapid deceleration around t_b in ambient ion speed between 3.9 and 4.15 ns ($\Delta x = 40 \text{ km/s}$), as observed. This results in a localized electron density peak that then transitions into the smooth ablation profile of the piston plume. The temperature in turn rises adiabatically ($T_e \propto n_e^{2/3}$) with the density, consistent with collisional electrons.

While at this stage in formation the density profile primarily reflects piston dynamics, it also crucially leads to the sweeping up of ambient ions through the pressure gradient electric field $E_x = \nabla P_e / e n_e$, where $P_e = n_e T_e$. This is directly observed in Fig. 4d, where the change in ambient ion speed between 3.9 and 4.15 ns ($\Delta v \sim 50 \text{ km/s}$) is quantitatively consistent with an acceleration due to $E_x (\Delta v_E = \int (Z_C e / m_C) E_x \, dt \sim 50 \text{ km/s})$, assuming that $\nabla P_e \approx (1 / v_{field}) dP_e / dt$. After they are accelerated, the ambient ions pass through the developing shock into the proto-downstream region, where they coast until being swept up by the main piston plume. The pressure gradient electric field also accounts for the behavior of the piston ion flow. Behind the density compression the pressure-gradient field points back towards the main plume, so incoming piston ions are decelerated (seen around 4.3 ns). Those ions are then strongly accelerated by the oppositely-directed field at the leading edge
the same field as for the ambient ions, though because the piston ions are moving with the density compression, they experience the acceleration for longer and thus obtain a larger change in speed. The deformation of the piston ion flow is therefore a key signature of the onset of piston-driven shock formation.

In summary, we have measured for the first time through Thomson scattering the evolution of electron and ion velocity distributions of a forming, magnetized collisionless shock. We have extracted time-resolved profiles of electron temperature, density, and ion flow speed, which indicate the development of strong density compressions and electron heating associated with the pile up of piston ions and acceleration of ambient ions. Proton radiography images confirm that there is an associated strong magnetic compression in the same region. This acceleration of ambient ions and subsequent deformation of the piston ion flow is a key component of magnetized shock formation, and is not observed without both a background magnetic field and ambient plasma. Since the distributions can in principle be probed along any direction, these results will enable future experiments to study multi-dimensional distribution functions in a manner analogous to spacecraft, allowing direct comparisons between studies of space and laboratory collisionless shocks.

We thank the staff of the Omega facility for their help in executing these experiments. Time on the Omega facility was funded by the Department of Energy (DOE) through grant No. DE-NA0003613. Processing of the proton images was funded by the DOE under grant No. DE-FG03-09NA29553. Simulations were conducted on proton images was funded by the DOE under grant No. DE-AC02-01CH11227. Development of the psc code was funded by the DOE under grant No. DE-SC0008655. This research was also supported by the DOE under grant No. DE-SC0016249.

* dereks@princeton.edu

[30] Due to heating of the electrons by the probe beam for temperatures less than 100 eV, these measurements are most likely an overestimate of the true electron temperature.