A COMPARISON OF METHODS FOR MONITORING
LOW AIRBORNE CONCENTRATIONS OF ARGON-41 AND
TRITIUM, WITH MIT-PFC DESIGN APPLICATIONS

by

JAMES CHRISTOPHER MCLoughlin

Submitted to the Department of Nuclear Engineering
on August 10, 1990 in partial fulfillment of the
requirements for the Degree of Master of Science in
Nuclear Engineering

ABSTRACT

Two primary methods, GM- and NaI-detection, of airborne
41Ar monitoring were compared experimentally to determine the
lowest resolvable concentration given reasonable sample sizes.
NaI-detectors provided a lower resolvable concentration than
GM tubes, primarily due to energy resolution, which greatly
reduced background noise.

Airborne 3H collection was compared for two primary
collection (water bath and dessicant traps) and one ancillary
method (direct condensation). All 3H detection was performed
via liquid scintillation. Tritium collection with water baths
yielded higher collection efficiencies than dessicant traps
for short (≤ 24 hrs) sampling durations. As the length of the
sampling duration increased, water traps yielded lower
collection efficiencies than dessicant traps, primarily due to
evaporation of water (including 3H) from the water traps.
Direct condensation (with dry ice as a coolant) as a
collection method of airborne 3H was found unsuitable, since
large amounts of gas were initially condensed, yet evaporated
as the sample’s coolant was removed.

41Ar detection for the MIT-PFC was determined to be best
provided by a low 40K NaI crystal shielded with lead and steel.
A Marinelli beaker was used as a monitoring volume to hold the
effluent sample. 3H monitoring at the MIT-PFC was fulfilled
with dessicant traps to catalytically separate the [HTO] and
[HT] fractions without the use of a carrier gas for the [HT].

Thesis Supervisor: Gordon Brownell, Ph.D.
Title: Professor of Nuclear Engineering
Thesis Co-Supervisor: Frederick F. McWilliams, M.S., C.H.P.
Title: Reactor Radiation Protection Officer MITR-II
Thesis Reader: Catherine Fiore, Ph.D.
Title: Research Scientist, MIT Plasma Fusion Center
This work was supported by the U.S. Department of Energy under contract number DE-AC02-78ET51013.