Symmetric spectrum current drive due to finite radial drift effects

Peter J. Catto

September, 2018

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge MA 02139 USA

This work was supported by the Department of Energy, Chicago, Grant DE-FG02-91 ER54109. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted.
Symmetric spectrum current drive due to finite radial drift effects

Peter J. Catto
Plasma Science and Fusion Center, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Abstract
The drift surfaces of minority heated ions differ from flux surfaces due to finite poloidal gyroradius effects. As the minority poloidal gyroradius approaches radial scale lengths in the plasma the difference between drift and flux surfaces can modify the heating and lead to a symmetric spectrum minority counter-current being driven. In response, a corresponding overall net co-current of comparable size is driven. This beneficial symmetric spectrum current drive in a tokamak is due to the parallel velocity asymmetry in the drift departure from a flux surface. As this new source of driven current is a side effect of minority heating it comes without any additional economic cost to reactor power balance. The symmetric spectrum current driven for near Maxwellian minorities is evaluated by an adjoint method and found to be modest. However, minority heating typically results in strong non-Maxwellian features on minority distributions so it may be possible to drive significantly larger co-current. A related evaluation is performed for alpha particles in a deuterium minority heated plasma with a tritium majority. The low density of the alphas tends to keep this driven symmetric spectrum current small, but at very high heating levels a significant co-current might be driven. Other mechanisms to drive co-current with a symmetric spectrum are discussed and estimated, including asymmetric electron drag and focusing of the applied minority heating radio frequency fields.

1. Introduction
Finite radial drift departures from a flux surface lead to the appearance of a "radial" action variable or canonical angular momentum derivative in the quasilinear operator for heating and current drive as shown by Kaufman (1972) and Eriksson & Helander (1994). These "radial" derivative terms are a direct result of the use of action-angle set of canonical coordinates mixing configuration space and velocity space in transit averaged descriptions. The mixing of velocity and configuration space variables becomes awkward to deal with, however, when current and charge densities are formed by integrating over all velocity space for use in a full wave treatment of wave propagation that solves Maxwell's equations in configuration space (Brambilla 1999; Jaeger et al. 2002). In particular, when spatial derivatives arise in transit averaged quasilinear treatments due to
this mixed variable behavior (Petrov & Harvey 2016), they must be dealt with in such a way that particle conservation is maintained so no particle sources or sinks are introduced by the heating and/or current drive in the configuration space of Maxwell's equations. This subtle behavior is discussed for both non-transit averaged and transit averaged formulations of the quasilinear operator in tokamak geometry.

More importantly, as minority heated charges move on drift surfaces to preserve their canonical angular momentum, large poloidal gyroradius departures from flux surfaces can lead to finite orbit minority effects that may need to be retained for minority heating and current drive (Cottrell & Start 1991; Eriksson et al. 1998; Mantsinen et al. 2002). Indeed, finite orbit minority effects are thought to play a role in sawtooth control (Hellsten, Carlsson & Eriksson 1995; Chapman et al. 2015).

The treatment of finite orbit effects considered here takes as it starting point the quasilinear operator recently derived by Catto, Lee & Ram (2017) in tokamak geometry for heating and current drive. Some key details of this operator are briefly summarized in section 2. This non-transit averaged quasilinear operator extends the constant magnetic field result of Kennel & Englemann (1966) to retain toroidal effects by including the magnetic drift, as well as the usual Doppler, broadening of the wave-particle resonance. The detailed form is given at the start of section 3. The operator is derived by using the high frequency gyrokinetics treatment of Lee, Myra & Catto (1983) which carefully keeps the distinction between particle and guiding center locations as in standard low frequency gyrokinetics (Catto 1978). This distinction is possible because the quasilinear derivation only requires the treatment of unperturbed trajectories so techniques developed for low frequency gyrokinetics (Catto, Tang & Baldwin 1981; Kagan & Catto 2008; Parra & Catto 2008; Parra & Calvo 2011; Calvo & Parra 2012) can be employed to higher order in the gyroradius over the unperturbed scale length expansion to remove gyrophase dependent terms in the Vlasov operator as in Lee, Myra & Catto (1983).

The quasilinear derivation of Catto, Lee & Ram (2017) does not explicitly claim to retain finite orbit drift effects. However, because they keep the distinction between particle and guiding center locations, the non-transit averaged form they derive is able to treat the drift off of a flux surface as charges drift radially to preserve their canonical angular momentum. This feature means that motion of a charge through a wave-particle resonance need only be adapted to account for the fact that the drifting charge moves in a manner that conserves its canonical angular momentum. This adjustment automatically preserves the negative definite entropy production property of their quasilinear operator while preserving the distinction between drift and flux surfaces. These features are discussed in detail in the remainder of section 3.
To explicitly evaluate finite orbit effects the quasilinear operator is transit averaged along the actual charged particle trajectory that preserves its canonical angular momentum as it passes through resonance. This procedure introduces a finite drift correction to the transit average quasilinear diffusivity as discussed in section 4. This finite drift departure term allows minority current to be driven with a symmetric heating spectrum by a mechanism different than the neoclassical streaming effect considered by Helander & Catto (2001) for electron cyclotron heating in a tokamak. The new mechanism arises because the finite orbit departure from a flux surface is asymmetric in the parallel velocity \(v_p \) along the magnetic field such that the counter-current direction of \(v_p \) charges are heated more than the co-current directed ones. As shown in Fig. 1, the heating difference between the counter and co moving ions occurs because the counter (co) have a longer (shorter) interaction time with the applied rf as discussed in Sections 4 and 5. As an example, the current driven by a symmetric spectrum is evaluated for a near Maxwellian minority species in section 5. In this limit the driven current is found to be rather modest so is unlikely to be useful. However, minority heating levels are often large enough to result in substantial departures from a Maxwellian. Therefore, it may be possible to drive significant minority counter-current with a symmetric spectrum, and thereby generate beneficial driven co-current. Detailed simulations seem necessary to make this determination. These could even be performed for deuterium and energetic alpha minorities in a tritium plasma.

Once we evaluate the parallel flow of the energetic minorities, \(V_{\text{lim}} \), for a symmetric spectrum it is important to ascertain the direction of the overall parallel current that is driven to determine if it is in the desirable co-current direction or the unfavorable counter-current direction. To make this determination we follow the insights outlined by Fisch (1981) for conventional minority current drive that relies on an asymmetry in the collisional heating. When there is no net parallel momentum input we assume we must satisfy

\[
M_m n_m V_{\text{lim}} + m_e n_e V_{\text{le}} + M_i n_i V_{\text{li}} = 0
\]

in our quasineutral plasma with

\[
Zn_m + Zn_i = n_e .
\]

We use \(n, V, Z, \) and \(M \) to signify density, parallel velocity, charge number, and mass, with the subscripts \(i, e, \) and \(m \) denoting background ion, electron, and minority species, with \(m \) the electron mass and \(Z = -1 \) the electron charge. The \(m \) subscript is suppressed on the minority charge number \(Z \) and mass \(M \). The friction between the electrons and minorities and background ions must vanish (Fisch 1981) to lowest order to satisfy the parallel electron momentum equation giving
\[Z^2 n_m (V_{lm} - V_{lc}) + Z^2 n_i (V_{li} - V_{lc}) = 0 . \] (1.3)

This friction equation is more carefully obtained by multiplying the parallel electron momentum equation by the magnetic field \(B \) and then flux surface averaging to annihilate the electron pressure and the electrostatic potential term (assuming Maxwell-Boltzmann responses to lowest order). As we are not concerned about inverse aspect ratio corrections, the procedure of Fisch (1981) is adequate for our purposes.

These three equations determine the direction of the parallel current

\[J_i = Z e n_m V_{lm} + Z e n_i V_{li} - n_e e V_{lc} \] (1.4)

once the direction of \(V_{lm} \) is known, as can be seen by neglecting the parallel momentum of the electrons as small to find

\[M_i n_i V_{li} = -M_n n_m V_{lm}, \] (1.5)

and then using the vanishing of the electron friction to obtain

\[V_{lc} = \frac{Z^2 n_m V_{lm} + n_i V_{li}}{Z^2 n_m + Z^2 n_i} = \frac{(Z^2 - Z^2 M/M_i)n_m V_{lm}}{Z^2 n_m + Z^2 n_i}. \] (1.6)

From these expressions we can already see that a negative parallel minority flow \((V_{lm} < 0) \), results in a positive parallel main ion flow \((V_{li} > 0) \) and a negative parallel electron flow \((V_{le} < 0) \), thereby resulting in the possibility of co-current being driven.

Eliminating \(V_{lc} \) and \(V_{li} \) the symmetric spectrum co-current can be written as

\[J_i = -Ze n_m V_{lm} \frac{Z_i (Z - Z_i)(n_i - Mn_m/M_i)}{Z^2 n_i + Z^2 n_m}, \] (1.7)

which for \(V_{lm} < 0 \) and \(Z > Z_i \) will be co-current as long as \(n_i > Mn_m/M_i \). In the subsequent sections we will demonstrate that when finite poloidal gyroradius effects are retained, a counter-current minority flow is ordinarily driven. Therefore, when a minority species is present a symmetric heating spectrum will normally result in co-current drive.

We also consider a second example of minority deuterium (D) heating in a tritium (T) plasma in section 6. In this case the amount of alpha counter-current driven tends to remain small as the alpha density is much smaller than the plasma density. However, at high minority heating levels it may be possible to drive modest and perhaps even significant co-current. The closing section summarizes results, but also discusses other possible ways to drive co-current with a symmetric spectrum.

2. Formulation of the quasilinear equation

We start with full Fokker-Planck kinetic equation

\[\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + (Ze/M) [\vec{e} + c^{-1} \vec{v} \times (\vec{B} + \vec{b})] \cdot \nabla f = C\{f\}, \] (2.1)

with \(\vec{e} = \vec{e}(\vec{r}, t) \) and \(\vec{b} = \vec{b}(\vec{r}, t) \) the applied radio frequency (rf) wave fields satisfying Faraday's law, and \(\vec{B} \) the unperturbed, axisymmetric magnetic field
\begin{equation}
\mathbf{B} = B_i = I(\psi) \nabla\zeta + \nabla\zeta \times \nabla\psi.
\end{equation}

Here ζ is the toroidal angle variable and $I = RB_i$ is a function of the poloidal flux function ψ, with B_i and B_p the toroidal and poloidal magnetic fields. We denote \mathbf{e}_i as the unit vector in the $V\psi$ direction by taking $\nabla\psi = RB_p \mathbf{e}_i$, and let $\mathbf{e}_2 = \mathbf{n} \times \mathbf{e}_i$ be the orthonormal unit vector. The notation is as in Catto, Lee & Ram (2017).

Our quasilinear treatment begins in what appears to be the usual manner by taking
\begin{equation}
f = f_0 + f_i + \ldots
\end{equation}
with $f_i \ll f_0$. However, the unperturbed drift kinetic operator acting on the unperturbed distribution function f_0 must vanish for the gyrophase independent drift kinetic canonical angular momentum as recalled in (2.8) below. The full gyrophase dependent canonical angular momentum ψ_* is
\begin{equation}
\psi_* = \psi - (Mc/Ze) R^2 V \zeta \cdot \tilde{v} = \psi_i + \Omega^{-1} \tilde{v} \cdot \mathbf{n} \cdot \nabla \psi,
\end{equation}
where the drift kinetic form $\tilde{\psi}_*$ written in terms of ψ, θ, v, μ, and σ is
\begin{equation}
\tilde{\psi}_* = \psi - I V_i / \Omega = \psi - \Omega^{-1} \sigma \sqrt{\nu^2 - 2 \mu_0 B} = \psi - \Omega^{-1} \nu \sigma \sqrt{1 - \lambda B / B_0},
\end{equation}
with $\Omega = ZeB / Mc$, $\mu_0 = V_i^2 / 2B(\mathbf{r})$ the lowest order magnetic moment, $\sigma = v_i / |V_i|$ the sign of $v_i = \mathbf{n} \cdot \mathbf{v} = \sigma \sqrt{\nu^2 - 2 \mu_0 B}$, ν the speed $v = \sqrt{\nu^2 + \nu_i^2}$, $\lambda = 2 \mu_0 B_0 / \nu^2$, and
\begin{equation}
\tilde{v} = \tilde{v}_i + v_i \mathbf{n} = v_i \left[\mathbf{e}_i (\tilde{r}) \cos \varphi + \mathbf{e}_z (\tilde{r}) \sin \varphi \right] + v_i \mathbf{n} (\tilde{r}) .
\end{equation}
The normalizing magnetic field is $B_0 = \sqrt{\langle B^2 \rangle}$ with $\langle \ldots \rangle$ a flux surface average. The last term in (2.4) is the difference between the guiding center and particle locations, while the $I V_i / \Omega$ term in (2.5) keeps the distinction between the flux and drift surfaces.

A drift kinetic treatment for f_i can depend on the drift kinetic constant of the motion $\tilde{\psi}_*$ that we treat as a dependent variable. Hence, we allow
\begin{equation}
f_i = f_0 (\tilde{\psi}_*, \psi, \theta, v, \mu, \sigma, t),
\end{equation}
with $\psi, \theta, v, \mu, \sigma$, and t the same independent drift kinetic variables as in Catto, Lee & Ram (2017), most of whose results we will be able to adopt.

The notation in (2.7) is intended to indicate that $\tilde{\psi}_*$ is a dependent variable and ψ is an independent variable, thereby allowing us to distinguish between finite orbit effects and flux surface variation. The notation will allow us to explicitly display the velocity dependent finite departure of a drift surface from a flux surface.

The drift kinetic canonical angular momentum $\tilde{\psi}_*$ is convenient to employ because it is a drift kinetic constant of the motion satisfying
\begin{equation}
(v_i \mathbf{n} + \tilde{v}_i) \cdot \nabla \tilde{\psi}_* = -\tilde{v}_i \cdot \nabla (I V_i / \Omega) = 0,
\end{equation}
(as shown in Appendix B of Parra & Catto 2010) where we also use $\tilde{v}_i \cdot \nabla \psi = v_i \mathbf{n} \cdot \nabla (I V_i / \Omega)$. Here we denote \tilde{v}_i as the magnetic drift,
\begin{equation}
\tilde{v}_i = \Omega^{-1} \mathbf{n} \times (\mu \nabla B + v_i^2 \mathbf{n} \cdot \nabla \mathbf{n}) = \Omega^{-1} v_i \nabla \times (v_i \mathbf{n}).
\end{equation}
By using total energy $E = v^2/2 + Z e \Phi(\psi)/M$ instead of v, as we could generalize to retain the $\vec{E} \times \vec{B}$ drift as well. To retain drift effects in the quasilinear operator we must allow f_0 to depend on the magnetic moment to higher order as shown by Catto, Lee & Ram (2017). Therefore, we use $\mu = \mu_0 + \mu_s$, where Catto, Lee & Ram (2017) prove that only $\mu_i \rightarrow -B^\perp \vec{v}_d \cdot \tilde{\vec{v}}_d$ and $B\nabla \mu \rightarrow \vec{v}_d - \tilde{\vec{v}}_d$ need be retained.

When parallel streaming and finite orbit effects compete and dominate the lowest order drift kinetic equation is

$$\langle v_f \vec{n} + \tilde{\vec{v}}_d \rangle \cdot \nabla \tilde{f}_0 = 0$$

(2.10)

with $f_0 = \tilde{f}_0 + \tilde{f}_0$, $\tilde{f}_0 >> \tilde{f}_0$, and

$$\tilde{f}_0 = \tilde{f}_0(\tilde{\psi}_s, \nu, \mu, \sigma),$$

(2.11)

indicating that the ψ and σ dependence can only enter through $\tilde{\psi}_s$.

When streaming does not dominate, the introduction of $\tilde{\psi}_s$ is of no benefit. Then f_0 satisfies the quasilinear (QL) equation

$$\partial \tilde{f}_0 / \partial t + (v_f \vec{n} + \vec{v}_d) \cdot \nabla \tilde{f}_0 + \langle \vec{a} \cdot \nabla \tilde{f}_0 \rangle = \langle \mathcal{Q}\{f_0\} \rangle,$$

(2.12)

with the perturbed acceleration defined as

$$\tilde{\vec{a}} = (Ze/M)(\tilde{\vec{c}} + c^{-1} \vec{v} \times \vec{b}),$$

(2.13)

and the gyroaverages $\langle \ldots \rangle$ performed at fixed $\psi, \theta, \nu, \mu, \sigma$, and t,

$$\langle \ldots \rangle = (2\pi)^{-1} \int \! \! d\varphi (\ldots).$$

(2.14)

Quasilinear theory assumes that f_0 does not contain any fast time or space variation and that collisions and quasilinear diffusion compete. As a result, we take f_0 to be the coarse grain average of f,

$$f_0 = \langle f \rangle_{cg} = \frac{1}{2T} \int_{t-T}^{t+T} d\tau \int \! \! 2\Delta \psi^{\Delta} \frac{d\psi}{2\pi} \int_{0}^{\psi^{\Delta}} \frac{d\varphi}{2\pi} \langle f \rangle_{\psi \varphi \tau},$$

(2.15)

where the integral over toroidal angle ζ insures axisymmetry, and the average $\langle \ldots \rangle_\theta$ over poloidal angle θ removes the exponential poloidal mode number variation. We must allow $\mathcal{Q}\{f_0\}$ to be a slow function of θ in a tokamak so $\langle \ldots \rangle_\theta \neq (2\pi)^{-1} \int \! \! d\varphi (\ldots)$. The integral over τ removes fast time variation by taking $\omega^{-1} << T << \nu^{-1}$, $\nu^{-1} << T << \nu^{-1}$, where ν and ω are the collision frequency and typical rf wave frequency, respectively. The limits on the poloidal flux function ψ integral resolve poloidal gyroradius scales by assuming $\Delta << \rho_p$, where $\rho_p = \rho B / B_p$ is the poloidal gyroradius, with ρ the species gyroradius. The radial and $\langle \ldots \rangle_\theta$ averages are defined so that the entropy production is negative definite, with f_0 allowed to be a slow function of ψ and θ.

We define the quasilinear operator \mathcal{Q} by

$$\mathcal{Q}\{f_0\} = -\langle \nabla \nu \cdot \langle \tilde{a} f_0 \rangle \rangle_{cg,\nu} = -\nabla \nu \cdot \langle \tilde{a} f_0 \rangle_{cg,\nu},$$

(2.16)
where the drift kinetic treatment in $\psi, \theta, v, \mu, \sigma$, and t variables requires that we average the QL term over gyrophase, as well as perform a coarse grain average. The drift kinetic equation then becomes
\[
\frac{df_0}{dt} + (v_\parallel \tilde{n} + \tilde{v}_d) \cdot \nabla f_0 = C\{f_0\} + Q\{f_0\}.
\] (2.17)
Rotational invariance allows us to use $\langle C\{f_0\}\rangle_q = C\{f_0\}$ as there is no preferred direction associated with the collision operator.

The preceding equation implicitly allows us to retain $\tilde{\psi}_s$ as a dependent variable when the streaming combination of (2.10) dominates due to finite orbit effects such that to lowest order $f_0 \to \tilde{f}_0(\tilde{\psi}_s,v,\mu,\sigma)$. Equation (2.17) is the same as Catto, Lee & Ram (2017) since it only differs by the introduction of a dependent variable $\tilde{\psi}_s$ to track finite orbit effects. That is, we now write $f_0 = f_0(\tilde{\psi}_s;\psi,\theta,v,\mu,\sigma,t)$, rather than using $f_0 = f_0(\psi,\theta,v,\mu,\sigma,t)$ - a form that does not allow us to explicitly display $\tilde{\psi}_s$ or "radial" spatial derivatives of f_0 when the velocity space gradient is performed.

Here we also emphasize that our result for the quasilinear operator must have the property that it does not act as a source or sink of particles since
\[
\int d^3v Q\{f_0\} = -\int d^3v \nabla \cdot \langle \tilde{a} f_1 \rangle_{cg} = 0.
\] (2.18)
That is, in drift kinetic variables, there can be no diffusive spatial particle transport (or source or sink of particles) due to the operator $Q\{f_0\}$. Such a statement might appear to contradict the results of Kaufman (1972) and Eriksson and Helander (1994), but their treatments are in canonical variables that mix configuration and velocity space and thereby only appear to introduce a radial spatial derivative as we will demonstrate in section 3.

We allow both spatial heat and parallel momentum diffusive transport since
\[
\int d^3v v^2 Q\{f_0\} = 2(Ze/M) \cdot \int d^3v \tilde{v} f_1 \neq 0
\] (2.19)
and
\[
\int d^3v Q\{f_0\} = \int d^3v \langle \tilde{a} f_1 \rangle_{cg} = 0.
\] (2.20)

Our choice of independent variables means we can simply adopt the quasilinear operator obtained by Catto, Lee & Ram (2017) to illustrate how finite orbit effects enter.

3. Quasilinear operator
Catto, Lee & Ram (2017) derive the following self-adjoint form for the QL operator:
\[
Q\{f_0\} = \sum_{\mu,\sigma} \frac{v_\parallel}{v} \left(\frac{\partial}{\partial v} + \frac{p\Omega v}{\omega B} \frac{\partial}{\partial \mu} \right) \left[D_{\parallel} \frac{v}{v_\parallel} \left(\frac{\partial f_0}{\partial v} + \frac{p\Omega v}{\omega B} \frac{\partial f_0}{\partial \mu} \right) \right],
\] (3.1)
with $p\Omega = \omega - k_v v_\parallel - \tilde{k} \cdot \tilde{v}_d$, and
\[D = \frac{\pi Z^2 e^2}{2 M^2 v^2} \sum_{k,m,n} \delta(\omega - p\Omega - k_v v_i - k_i v_d) \left| \tilde{e}_m \left[i\tilde{\nu}_i J_p(w) + \tilde{c}_\perp v_\perp \right] \right|^2, \]

(3.2)

manifestly positive, with no quasilinear particle diffusion as required by (2.18). In this final form the entropy production is negative definite, and it is no longer necessary to keep the distinction between \(\mu \) and \(\mu_0 \), so we may now use \(d^3v \rightarrow 2\pi v B dvdu_\perp/v_i \). To obtain this form the applied fluctuating electric field \(\tilde{e} = \tilde{e}(\vec{r}, t) \) is Fourier decomposed poloidally (m) and toroidally (n), permitted to have more than a single applied wave frequency by Fourier decomposing in time, and allowed to possess local fine scale radial eikonal variation with multiple roots (sum over \(\kappa \)) due to mode conversion. Therefore, we take

\[\tilde{e} = \tilde{e}(\vec{r}, t) = \sum_{m,n} \tilde{e}_m e^{-i(m+1)(\psi\psi(\psi)) + im_0}, \]

(3.3)

with \(w = k_\perp v_\perp / \Omega \) the argument of the Bessel functions,

\[\tilde{k} = \nabla S = V(\psi) - \Omega S / \psi = \tilde{c}_r R_\psi, \]

(3.4)

\[k_i = (m - Qn) / qR \cdot B \sim (m - Qn) / qR, \]

(3.5)

\[\tilde{k} = k_\perp + m(\nabla \psi - n(\nabla \psi)), \]

(3.6)

\[\tilde{e}_m \equiv \frac{1}{2} \left[\tilde{e}_m e^{i\kappa_1 \psi} J_\psi(w) + \tilde{e}_m e^{-i\kappa_1 \psi} J_{-\psi}(w) \right] = \frac{p}{k_\perp w} J_p(w) k_\perp + \frac{i}{k_\perp} J_{-\psi}(w) \tilde{n} \times \tilde{k}, \]

(3.7)

\[k_\perp = (k_\perp / 2)(\tilde{e}_m e^{i\kappa_1} + \tilde{e}_m e^{-i\kappa_1}), \]

(3.8)

and

\[\tilde{e}_m = \tilde{c}_m \pm i\tilde{e}_m, \]

(3.9)

where \(\tilde{e}_m \) is the left hand polarized wave direction of minority heating and current drive. Preserving the desired entropy production property requires

\[\langle \tilde{e} \tilde{e} \rangle_{\psi} = \frac{1}{4} \sum_{m,m,n} \left(\tilde{e}_m^* \tilde{e}_m + \tilde{e}_m^* \tilde{e}_m \right). \]

(3.10)

Equations (3.1) and (3.2) are the results of Catto, Lee & Ram (2017). They reduce to the QL operator of Kennel-Englemann (1966) in a constant magnetic field. Our QL ordering like theirs allows \(Q \sim C \) or \(D/v^2 \sim v, \) with \(D \sim Z^2 e^2 \sqrt{\rho_m} / M^2 \omega \sim \omega v^2_{\psi_{\text{quiv}}} \) and \(v_{\psi} \sim Z e_\psi M / \omega. \) It requires small quiver speeds \(v_{\psi_{\text{quiv}}} \) compared to the typical minority ion tail speed \(v_{\psi} \) to satisfy \(v^2_{\psi_{\text{quiv}}} / v^2_{\psi} \sim v / \omega << 1. \)

To display finite orbit effects we can employ the dependent variable \(\tilde{\psi}_s \) to write

\[\frac{\partial}{\partial v} = \frac{\partial}{\partial v_{\psi}}, \]

(3.11)

\[\frac{\partial}{\partial \psi} = \frac{\partial}{\partial \psi}, \]

and

\[\frac{\partial}{\partial \psi} = \frac{\partial}{\partial \psi}, \]

(3.12)
In this notation (3.1) gives an alternate, but not particularly useful, form displaying the effect of finite orbits by the appearance of derivatives with respect to \(\tilde{\psi}_*\):

\[
Q\{f_0\} = \sum_{\alpha p} \frac{v_\alpha}{v} \left[\frac{\partial}{\partial v} \right]_{\tilde{r}_s} + p\Omega v \frac{\partial}{\partial \mu_\alpha} \left(-1 - \frac{p\Omega}{\omega} \right) \frac{\partial}{\partial \tilde{\psi}_*} - \left(\frac{p\Omega}{\omega} \right) \frac{\partial}{\partial \Omega v} \frac{\partial}{\partial \tilde{\psi}_*} - \left(1 - \frac{p\Omega}{\omega} \right) \frac{\partial}{\partial \Omega v} \frac{\partial}{\partial \tilde{\psi}_*} .
\]

(3.13)

If the \(\tilde{\psi}_*\) dependence of \(D\) is clear in (3.13), as it is when (2.10) and (2.11) hold, then the Catto, Lee & Ram (2017) form is general enough to retain finite orbit effects with

\[
\left(\rho_p \Omega_0^2 \right) \frac{\partial}{\partial \tilde{\psi}_*} \sim \rho_p/a_s \sim 1,
\]

(3.14)
as well as drift effects with

\[
k_d v_\delta / k_d \psi_0 \sim k_d R / k_p \rho_p \sim 1.
\]

(3.15)

Both finite orbit width and drift effects can be significant for energetic ions with a radial scale length of \(a_s\) for \(\tilde{r}_s\), where \(\rho_p = \rho B/B_p\) denotes the energetic ion poloidal gyroradius and \(B_p\) the poloidal magnetic field.

Unlike the Hamiltonian action-angle treatments of Kaufman (1972) and Eriksson & Helander (1994), expression (3.13) for the quasilinear operator is not yet bounce or transit averaged. However, like these action-angle treatments, (3.13) makes use of a mixed velocity and configuration space variable - here the dependent mixed variable \(\tilde{\psi}_*\). In these mixed variables the vanishing of the particle sink or source necessary to satisfy (2.18) is not as obvious as it is in form (3.1) or its cylindrical velocity space equivalent.

4. Transit averaged quasilinear operator

When streaming dominates with finite orbit effects retained the lowest order steady state equation for \(f_0\) requires (2.10) be satisfied with

\[
f_0 = \tilde{f}_0(\tilde{\psi}_*, v, \mu_0, \sigma) + \tilde{f}_0(\tilde{\psi}_*, \tilde{\theta}, v, \mu_0, \sigma),
\]

(4.1)

where \(\tilde{f}_0 \gg \tilde{f}_0\). Then to next order we obtain

\[
(v_\delta + \tilde{v}_d) \cdot \nabla \tilde{f}_0 = C\{\tilde{f}_0\} + Q\{\tilde{f}_0\}.
\]

(4.2)

To keep finite orbit effects it is convenient to use \(\tilde{\psi}_*\) and \(\tilde{\theta}\) as variables as the transit average must be performed along the actual drift orbit traced out at fixed \(\tilde{\psi}_*\). Then

\[
(v_\delta + \tilde{v}_d) \cdot \nabla \tilde{\psi}_* \frac{\partial f_0}{\partial \tilde{\psi}_*} \bigg|_{\tilde{r}_s} = C\{\tilde{f}_0\} + Q\{\tilde{f}_0\}.
\]

(4.3)

Ignoring \(\rho_p/R\) corrections allows us to use

\[
(v_\delta + \tilde{v}_d) \cdot \nabla \tilde{f}_0 = [v_\||v_\delta (\tilde{v}_d / \Omega) \tilde{\psi}_* \cdot \nabla \tilde{\psi}_* = v_\delta \tilde{\psi}_* \cdot \nabla \tilde{\psi}_* ,
\]

(4.4)
giving

\[
v_\delta \tilde{\psi}_* \cdot \nabla \tilde{\psi}_* \frac{\partial f_0}{\partial \tilde{\psi}_*} \bigg|_{\tilde{r}_s} = C\{\tilde{f}_0\} + Q\{\tilde{f}_0\} ,
\]

(4.5)
with all the poloidal gyroradius variation of interest located in \(\tilde{T}_0 = \tilde{T}_0(\tilde{\psi}_s, v, \mu_0, \sigma) \) since we will next annihilate the \(\tilde{T}_0 \) term. Approximation (4.4) is consistent with integrating along an orbit of fixed \(\tilde{\psi}_s = \psi - I v_\parallel/\Omega \) since it gives

\[
\frac{d\psi}{d\theta} = \frac{\tilde{v}_\parallel \cdot \nabla \psi}{(v_\parallel \tilde{n} + \tilde{v}_\parallel) \cdot \nabla \theta} = \frac{\partial (Iv_\parallel/\Omega)}{\partial \tilde{\theta}} - \frac{1}{I} \frac{\partial (Iv_\parallel/\Omega)}{\partial \psi} \frac{\partial}{\partial \tilde{\theta}} \quad \text{for } \tilde{\psi}_s. \tag{4.6}
\]

We then introduce the transit average

\[
(...)_t = \frac{\int f d\theta (\ldots)/v_\parallel \tilde{n} \cdot \nabla \theta}{\int f d\theta /v_\parallel \tilde{n} \cdot \nabla \theta}, \tag{4.8}
\]

where \(\theta \) integration in the numerator and denominator is over a full poloidal circuit following a minority ion moving with fixed \(\tilde{\psi}_s \). For trapped ions, \(v_\parallel \) and \(\tilde{\theta} \) change sign simultaneously at a turning point. Transit averaging the kinetic equation gives

\[
C\{\tilde{T}_0\} + Q\{\tilde{T}_0\} = 0, \tag{4.9}
\]

where the transit averaged quasilinear operator is

\[
Q\{\tilde{T}_0\} = \frac{1}{v(\int f d\tau)} \sum_{\omega, p} \left(\frac{\partial}{\partial v} + \frac{p\Omega v}{\omega B} \frac{\partial}{\partial \mu_0} \right)[vD(\int f d\tau)(\frac{\partial \tilde{T}_0}{\partial v} + \frac{p\Omega v}{\omega B} \frac{\partial \tilde{T}_0}{\partial \mu_0})], \tag{4.10}
\]

with \(D \) the transit average of the full QL diffusivity

\[
D = D(\tilde{\psi}_s, v, \mu_0, \sigma) = \int f d\theta D /v_\parallel \tilde{n} \cdot \nabla \theta /\int f d\theta /v_\parallel \tilde{n} \cdot \nabla \theta \tag{4.11}
\]

and \(d\tau = d\theta /v_\parallel \tilde{n} \cdot \nabla \theta \). The quasilinear diffusivity \(D \) has spatial variation only via \(\tilde{\psi}_s \), as the transit average retains the distinction between the rf fields along drift and flux surfaces. A key place where finite poloidal minority gyroradius effects enter (3.2) is in the gyrofrequency \(\Omega \) in the delta function. There we must Taylor expand about \(\tilde{\psi}_s \) using

\[
\Omega = \Omega(\psi, \tilde{\theta}) = \Omega(\tilde{\psi}_s, \tilde{\theta}) + (\psi - \tilde{\psi}_s) \partial \Omega /\partial \psi + ... = \Omega_0 + \Omega^{-1} v_\parallel \partial \Omega /\partial \psi + ..., \tag{4.12}
\]

where \(\Omega_0 = \Omega(\tilde{\psi}_s, \tilde{\theta}) \). The correction term is small compared to \(\Omega \) so the distinction between \(\tilde{\psi}_s \) and \(\psi \) does not matter in it. However, this small term need not be small compared to \(k_\parallel v_\parallel \) and \(\tilde{k} \cdot \tilde{v}_\parallel \), so it must be retained in

\[
\delta(\omega - p\Omega - k_\parallel v_\parallel - \tilde{k} \cdot \tilde{v}_\parallel) = \delta(\omega - p\Omega - p\Omega^{-1} v_\parallel \partial \Omega /\partial \psi - k_\parallel v_\parallel - \tilde{k} \cdot \tilde{v}_\parallel). \tag{4.13}
\]

In addition, the \(\tilde{\psi}_s \) and \(\psi \) distinction may need to be retained in \(|\tilde{\epsilon}_m [\tilde{n}v_\parallel J_p(w) + \tilde{\epsilon}_p v_\perp] |^2 \).

For now we assume this quantity varies slowly compared to a poloidal gyroradius. Consequently, we write

\[
D = \frac{\pi Z^2 e^2}{2 M^2 v^2} \sum_{k, m, n} \delta(\omega - p\Omega - p\Omega^{-1} v_\parallel \partial \Omega /\partial \psi - k_\parallel v_\parallel - \tilde{k} \cdot \tilde{v}_\parallel) |\tilde{\epsilon}_m [\tilde{n}v_\parallel J_p(w) + \tilde{\epsilon}_p v_\perp] |^2, \tag{4.14}
\]

where the subscript * indicates a quantity is to be evaluated at \(\tilde{\psi}_s \) (and not \(\psi \)) as it passes through the resonance where the argument of the delta function vanishes. That is, for each pass through cyclotron resonance (at \(\omega = p\Omega_\ast \) for \(p \neq 0 \),

\[
10
\]
where to focus on the effect due to radial drift departure from a flux surface we neglect the Doppler and drift broadening of the resonance as small by assuming ρΩ⁻¹νµΩ/∂ψ ≫ kµν ~ k ⊥ v_d or ρ_B/ρ_p >> k_R ~ k_p ρ_p. These inequalities are not well satisfied; but Doppler and drift broadening effects do not result in driven current in an up-down symmetric tokamak an asymmetry in wave number spectrum is introduced that may result in appreciable driven current. For trapped particles that do not pass through resonance (B_0/B > λ > ρΩ/ω), D = 0.

In the preceding a finite poloidal gyroradius term is retained in the denominator as can be seen by using B = B_0(1 − ε cos θ) for p = 1 to obtain
\[
\nu \cdot \nabla \frac{d}{d\vartheta} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i \Omega}{q R_0} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right),
\]
where ν_i → αν/1 − λ and R = R_0(1 + ε cos θ) with ε = r/R_0 << 1 and τ_int the interaction time with the applied rf field. We assume the resonance ω = Ω_p passes through the magnetic axis and allow finite
\[
\left| \frac{\nu_i}{RB_p r} \right| = |q \nu_i/\nu_i| < 1.
\]
In this large aspect ratio, on axis limit
\[
D = \frac{\pi^2 e^2}{\epsilon \omega M^2} \sum_{\lambda} \left| \frac{\nabla \lambda / \nu_i \Omega / \Omega^2}{\nu_i / \Omega^2} \right| = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right) \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right) = \frac{\nu_i}{\Omega^2} \left(\frac{\nu_i}{\Omega^2} \right),
\]
where we let \(\xi = \sqrt{1-\lambda} B_0 \) and now w = k_±λ/2 ν/Ω. The interaction time τ_int ∝ q/ε for the counter (co) traveling minorities that are closer to (further from) the magnetic axis is longer (shorter) and therefore more (less) heating occurs as shown schematically in Figure 1. Both σ and I are signed quantities, so excess minority heating always occurs in the favorable counter-current direction. We account for the passing ions making two passes and the trapped ions making four passes through resonance during a complete poloidal circuit, and use
\[
\int \frac{d\vartheta}{\xi} = \frac{4}{\sqrt{2\epsilon}} \left\{ \begin{array}{ll}
\sqrt{1-\epsilon + 2\epsilon k^2} K(k) & \text{trapped (} k^2 \geq 0) \\
\sqrt{1-\epsilon) k^2 + 2\epsilon K(k)} & \text{passing (} k^2 \geq 0)
\end{array} \right\},
\]
where \(\kappa^2 = k^{-2} = [1 - (1 - \varepsilon)\lambda] / 2\varepsilon\lambda \), \(K \) is the complete elliptic integral of the first kind, and the trapped-passing boundary is at \(\kappa^2 = 1 = k^2 \). When a trapped minority ion is unable to reach resonance, then \(\tilde{D} = 0 \). Therefore, a Heaviside step function has been inserted in (4.18). The distinction between \(\tilde{\psi}_r \) and \(\psi \) is unimportant for \(r, R, B_p, I, \) and \(\Omega_0 = \omega \), so no subscript appears.

Using pitch angle \(\lambda \) in (4.10) instead of magnetic moment gives

\[
\frac{\partial}{\partial v} + \frac{p\Omega v}{\omega B} \frac{\partial}{\partial \mu_0} \to \frac{\partial}{\partial v} + 2 \frac{p\Omega_0}{\omega} - \lambda \frac{\partial}{\partial \lambda},
\]

(4.20)

where \(p = 1 \) and \(\omega = \Omega_0 \) for the resonance passing through the magnetic axis.

The next section considers the simplified limit for minority heating finite orbit current drive in which collisions dominate over quasilinear heating so that an adjoint method can be used to obtain explicit results.

5. A limiting diffusivity form for minority heating and current drive

For minority heating and current drive we need only keep \(p = 1 \) and the left hand polarized wave (we set \(\tilde{e}_m \cdot \tilde{n} = 0 = \tilde{e}_m \cdot \tilde{e}_\perp \)), then for \(w \ll 1, k_1 v_i \to 0 \) and \(k \cdot \tilde{v}_d \to 0 \), we are left with

\[
D = \frac{\pi Z^2 e^2 \nu_1^2}{8M^2 v_2^2} \sum_{k,m,n} \left| \tilde{e}_m \cdot \tilde{e}_n \right|^2 \delta(\omega - \Omega - I\Omega^{-1}v_i) \partial \Omega / \partial \psi.
\]

(5.1)

Then for large aspect ratio with a resonance passing through the magnetic axis

\[
\tilde{D} = \frac{\pi Z^2 e^2}{4\varepsilon \omega \mu_1 M^2} \frac{\lambda H(1 - \lambda)}{\sqrt{1 - \lambda} \left(1 + \frac{\sigma \sqrt{1 - \lambda}}{R B_p \rho_0} \right)} \int d\theta / \xi.
\]

(5.2)

In the absence of poloidal gyroradius effects \(\tilde{D} \) is an even function of \(\nu_i = \sigma \nu \sqrt{1 - \lambda} \).

We will next demonstrate that the finite orbit modification will lead to current drive for a symmetric heating spectrum. Actually, this is already clear from (5.2) since when \(I > 0 \) then there is more (less) heating of the \(v_i < 0 \ (v_i > 0) \) minorities, while if we reverse the toroidal magnetic field \((I < 0) \) then there is more (less) heating of the \(v_i > 0 \ (v_i < 0) \) minorities. As a result, this symmetric spectrum driven minority current is always in the favorable counter-current direction!

For minority ion heating and current drive an approximate collision operator for the energetic minorities is obtained by performing speed expansions of the full unlike Fokker-Planck collision operator for \(\nu_e^2 = 2T_e / m \gg \nu^2 >> \nu_i^2 = 2T_i / M_i \). We define the slowing down time by electron drag as
\[\tau_s = \frac{3MT_c^{1/2}}{4(2\pi n)^{1/2} |Z^2| n_e / n\Lambda}, \]

(5.3)

with \(M \) and \(Z \) the minority mass and charge number. We also define the critical speed \(v_c \) at which electron and ion drag are equal by

\[v_c^3 = \frac{3\pi^{1/2} T_c^{3/2}}{(2m)^{1/2} n_e} \sum_i Z_i^2 n_i, \]

(5.4)

and a speed below which, and in the vicinity of, pitch scattering must be retained by

\[v_s^3 = \frac{3\pi^{1/2} T_c^{3/2}}{(2m)^{1/2} M_n n_e} \sum_i Z_i^2 n_i, \]

(5.5)

where the sums are over all background ion species. Then the speed expansions give the non-self-adjoint vector form

\[C(f_0) = \frac{1}{\tau_s} \nabla \cdot \left[(\nabla f_0 + \frac{T_c}{M} \nabla f_0) + \frac{v_s^3}{v_e^3} (\nabla f_0 + \frac{T_c}{M} \nabla f_0) + \frac{v_s^3}{2v_e^3} (v_e^3 - v_s^3) \cdot \nabla f_0 \right], \]

(5.6)

with

\[T_i = (\sum_i Z_i^2 n_i T_e / M_i) / (\sum_i Z_i^2 n_i / M_i). \]

(5.7)

The preceding collision operator is not quite self-adjoint as it relaxes the lower speed minorities to a Maxwellian at the effective ion temperature \(T_e \), and the more energetic minorities toward a Maxwellian at the electron temperature. The ion drag time and pitch angle scattering times are \(\tau_s / v_s^3 \) and \(\tau_s / v_s^3 \) and \(v_e^3 >> v_s^3 >> v_i^3 \).

If we simplify by assuming \(T_i = T_e \) then the collision operator vanishes for a Maxwellian minority distribution function and is self-adjoint. This feature suggests an adjoint solution method to demonstrate that parallel current can be driven by a symmetric spectrum of ion cyclotron waves. To begin we let \(f_0 = f_0^{(0)} + f_0^{(1)} + \ldots \) with \(f_0^{(0)} >> f_0^{(1)} \) and assume that to lowest order

\[(v_i \nabla + \nabla_d) \cdot \nabla f_0^{(0)} = C(f_0^{(0)}) \]

(5.8)

Transit averaging gives a solubility constraint

\[\overline{C(f_0^{(0)})} = 0 \]

(5.9)

that can only be satisfied by a Maxwellian,

\[f_0^{(0)} = f_M = n_m (M / 2\pi T_e)^{3/2} e^{-m^2 / 2T_e}, \]

(5.10)

with \(n_m \) the minority density. For a Maxwellian, \(C(f_M) = 0 \), so we must also satisfy

\[(v_i \nabla + \nabla_d) \cdot \nabla f_M = 0 \]

(5.11)

Consequently, to remain Maxwellian, \(f_M \) cannot depend on \(\bar{\psi}_e \). Any spatial variation of \(n_m \) and \(T_e \) in \(f_M (v) \) must be weak compared to a poloidal minority gyroradius and lead to neoclassical effects that are not of interest here. Cottrell & Start (1991) consider the minority heating when minority drift departures off a flux surface are on the scale of the
background radial variation of the slowing down time. They ignore the symmetric spectrum current drive associated with the distinction between flux and drift surfaces as they pass through resonance. However, for the large departures they consider, the asymmetry in the electron drag may also result in a symmetric spectrum driven counter-current as will be estimated later in this section.

Letting \(\tilde{f} = f_0^{(i)} \) to streamline the notation, the next order equation becomes

\[
(v_i \tilde{n} + \tilde{v}_d) \cdot \nabla \tilde{f} - C\{\tilde{f}\} + Q\{f_m\} = 0, \tag{5.12}
\]

where the self-adjoint form for \(C \) is

\[
C\{\tilde{f}\} = \frac{1}{\tau_s} \nabla \cdot \left\{ \frac{v^3 + v_c^3}{v^3} \left[\frac{T}{M} f_m \nabla \frac{f}{v} \right] + \frac{v^3 f_m}{2v^3} (v^2 \tilde{f} - \tilde{v} \tilde{v}) \cdot \nabla \frac{f}{f_m} \right\}. \tag{5.13}
\]

To lowest order we assume

\[
(v_i \tilde{n} + \tilde{v}_d) \cdot \nabla \tilde{f} = 0, \tag{5.14}
\]

which allows poloidal gyroradius scale spatial variation in \(\tilde{f} \) only via \(\tilde{\psi}_n \). Transit averaging the next order equation gives the solubility constraint

\[
C\{\tilde{f}\} + Q\{f_m\} = 0; \tag{5.15}
\]

a difficult equation to solve.

To evaluate the symmetric spectrum parallel current driven by finite poloidal gyroradius effects we introduce the modified adjoint equation

\[
(v_i \tilde{n} + \tilde{v}_d) \cdot \nabla \tilde{g} + C\{\tilde{g}\} = -Bv_i f_m / I(\psi), \tag{5.16}
\]

and use a finite orbit generalization of the technique of Antonsen & Chu (1982). Multiplying the \(\tilde{f} \) equation by \(\tilde{g} / f_m \) and the \(\tilde{g} \) equation by \(\tilde{f} / f_m \), integrating over velocity space, flux surface averaging, and adding gives

\[
(B \int d^3 v_i \tilde{f}) = I(\int d^3 v_i \tilde{g} f_m^3) Q\{f_m\}, \tag{5.17}
\]

where we used the self-adjointness of \(C \), and (2.9). In the absence of finite poloidal gyroradius modifications and for a symmetric spectrum, \(\tilde{D} \) and lowest order \(\tilde{f} \) would be even functions of \(v_i \) and lowest order \(\tilde{g} \) would be an odd function of \(v_i \).

It is simpler to solve the \(\tilde{g} \) equation than the equation for \(\tilde{f} \). To lowest order

\[
(v_i \tilde{n} + \tilde{v}_d) \cdot \nabla \tilde{g} = v_i \tilde{n} \cdot \nabla \tilde{\psi} \frac{\partial \tilde{g}}{\partial \tilde{\psi}}|_{\tilde{\psi}_n} = 0, \tag{5.18}
\]

so any spatial variation of \(\tilde{g} \) is through \(\tilde{\psi}_n \). Transit averaging the next order equation gives the solubility constraint

\[
C\{\tilde{g}\} = -Bv_i f_m / I. \tag{5.19}
\]

For the trapped particles \(B\tilde{v}_n = 0 \), which gives \(\tilde{g}_t = 0 \). For the passing particles we can replace the transit averages by a flux surface averages. Then we need only solve

\[
I(B\tilde{v}_i C\{\tilde{g}_p\}) = -B^2 f_m, \tag{5.20}
\]

where we have used \(\langle B/v_i \rangle [v_i \tilde{n} + \Omega^{-1} v_i \nabla \times (v_i \tilde{n})] \cdot \nabla \tilde{g}_p \rangle = 0 \).
We simplify further by assuming \(v^3_m = (2T_e/M)^{3/2} << v^3_e \sim v^3_\lambda << (2T_e/m)^{3/2} \equiv v^3_e \), then we need to solve
\[
\frac{\sigma IT_e}{\tau_s Mv^3_f} \frac{\partial}{\partial v} \left((v^3 + v^3_e) f_m \frac{\partial}{\partial v} (\tilde{g}_p) \right) + \frac{2\sigma I v^3_e B_0}{\tau_s v^2 f_m} \frac{\partial}{\partial \lambda} \left(\lambda \langle \tilde{g}_p \rangle \frac{\partial \tilde{g}_p}{\partial \lambda} \right) = -\langle B^2 \rangle. \tag{5.21}
\]
If we use the \(\varepsilon \ll 1 \) approximations \(\langle \tilde{g} \rangle = \sqrt{1 - \lambda} \) and \(\langle B/\tilde{g} \rangle = B_0/\sqrt{1 - \lambda} \), then we may take \(\tilde{g}_p = \sqrt{1 - \lambda} G_p(v) \) to find
\[
\frac{T_e}{M} \frac{\partial}{\partial v} \left((v^3 + v^3_e) f_m \frac{v^3}{\partial v} \right) - \frac{v^3}{v} G_p \frac{\partial}{\partial v} \left(\frac{\sigma B_0 \tau_s v^4}{41 v^2_e} \right) = -\frac{\sigma B_0 \tau_s v^4}{41 v^2_e} \langle B^2 \rangle. \tag{5.22}
\]
where we recall \(\langle B^2 \rangle = B_0^2 \). For \(v^3_\lambda \to 0 \) we see that
\[
\tilde{g}_p = \sqrt{1 - \lambda} G_p = \frac{\sigma B_0 \tau_s v^4}{41 v^2_e} \langle B^2 \rangle. \tag{5.23}
\]
Retaining the pitch angle scattering term for \(v^3_m << v^3 << v^3_e \sim v^3_\lambda \), we find
\[
\tilde{g}_p = \sqrt{1 - \lambda} G_p = \frac{\sigma B_0 \tau_s v^4}{41 v^2_e} \langle B^2 \rangle. \tag{5.24}
\]
To evaluate the current we use \(\frac{\partial \tilde{g}_p}{\partial \Phi} = 0 \) to rewrite (5.17) as
\[
\langle B \int d^3 v \tilde{\tau} \rangle = I \int d^3 v \frac{B_f}{B_0} \langle B \frac{\tilde{g}_p}{v} Q(f_m) \rangle = I \int d^3 v \frac{v^2}{B_f} \langle B \frac{\tilde{g}_p}{v} Q(f_m) \rangle \tag{5.25}
\]
with
\[
\langle B \frac{Q(f_m)}{v} \rangle = \frac{1}{v} \left(\frac{\partial}{\partial v} + \frac{2}{v} (1 - \lambda) \frac{\partial}{\partial \lambda} \right) \langle B D \rangle \left(\frac{\partial f_m}{\partial v} \right). \tag{5.26}
\]
Then recalling \(B_0 d^3 v |v| \to 2\pi B v^3 d v d \lambda \) and \(\langle BD/\tilde{g} \rangle \big|_{\lambda=0} = 0 \), integrating by parts gives
\[
\langle B \int d^3 v \tilde{\tau} \rangle = \frac{3MI}{T_e} \int d^3 v \frac{v^2}{B_f} \langle B \frac{BD}{v} \rangle, \tag{5.27}
\]
where the finite orbit effect enters in the denominator of
\[
\langle BD \rangle = \frac{D_0 B_0}{8\varepsilon_0 \sigma \sqrt{1 - \lambda} (1 + (\lambda v^2_e \sqrt{1 - \lambda} \rangle / B \rho_0)} \tag{5.27}
\]
with \(D_0 \) and the quiver speed \(v_{\text{quiv}} \) defined by
\[
\frac{D_0}{\omega} = \frac{v^2_{\text{quiv}}}{M^2 \omega^2} \sum_{x,m,n} |\tilde{e}_m \cdot \tilde{e}_n|^2. \tag{5.28}
\]
Substituting in and summing over both signs of \(\sigma \) we find
\[
\langle B \int d^3 v \tilde{\tau} \rangle = -\frac{3\pi M B_0 \tau_s D_0}{2\varepsilon T_e B_0 \rho_0 (4 v^2_e + v^2_\lambda)} \int_0^\infty \frac{\lambda \sqrt{1 - \lambda}}{[1 - (q v^2_e / \rho_0)]}. \tag{5.29}
\]
Assuming \((q v/\rho_0)^2 \ll 1 \), we find the minority parallel current driven by the symmetric spectrum to be
\[J_{\text{min}} = ZeB_0 \langle B \int d^3v \nu f \rangle = -\frac{12Ze n_m v_m^3 v_{\text{quiv}}^2 \tau_s I}{5\pi^{1/2}(4v_c^3 + v_r^3)\varepsilon R B_p}, \] (5.30)

where we use \(\pi^{3/2} \int_0^\infty dv v^7 f_M = 3n_m v_m^5 \) and \(\int_0^1 d\lambda \lambda \sqrt{1-\lambda} = 4/15 \). For 3.5 MeV alphas in a 5 T field, \(v/\omega \sim 5 \) cm.

The bootstrap current is
\[J_{bs} \sim Z e n_v v_c (q v_c / e^{1/2} \Omega \omega_a), \] (5.32)

with \(v_i^2 = 2T_i / M_i \). The ratio gives
\[\frac{J_{\text{min}}}{J_{bs}} \sim \frac{Z M \alpha_m n_m v_m^2 \nu_{\text{quiv}}^2 \nu_{\text{c}}}{Z M \alpha_m n_m v_c^2} \sim \frac{Z M n_m a \nu_{\text{equiv}}^2 \nu_{\text{c}}^2}{Z M M \nu_{\text{equiv}}^2 \nu_{\text{c}}^2}, \] (5.33)

with \(\Omega = \omega \). Next we estimate this ratio to determine when the size of the symmetric spectrum current drive becomes interesting.

For the minority ions to be a lowest order Maxwellian collisions must dominate. Using (5.13) with \(v \sim v_c \) gives \(\overline{C(\ell)} \sim \overline{f_c} / v_m^2 \tau_s \). Using (5.26) and (5.27) gives the estimate \(\overline{Q(\ell)} = f_m D / v_m^2 \sim f_0 D_0 / \nu_{\text{equiv}}^2 \). As a result, we expect (5.15) to give
\[\overline{f} / f_M \sim v_m \nu_{\text{equiv}} D_0 / \nu_{\text{equiv}}^2 \sim v_c \nu_{\text{equiv}} v_m / \nu_{\text{equiv}}^3 << 1. \] (5.34)

This estimate suggests highly non-Maxwellian minority current drive. However, balancing electron drag and minority heating gives \(\nu_{\text{equiv}} / \nu_{\text{equiv}} \sim \nu_{\text{equiv}}^2 \), with \(\nu_{\text{equiv}} \gg \nu_{\text{equiv}}^2 \)

generating highly non-Maxwellian minority distributions, as found by Stix (1975) and as seen from other bi-Maxwellian forms (Catto & Myra 1992; Catto, Myra & Russell 1994). For example, it may be possible that alternate estimates such as \(\overline{Q(\ell)} \sim \overline{f} D_0 / \nu_{\text{equiv}}^2 \) and \(\overline{C(\ell)} \sim \overline{f} / \nu_{\text{equiv}}^2 \) become appropriate for \(v \sim v_c \), giving \(\nu_{\text{equiv}} \nu_{\text{equiv}}^2 \sim \nu_{\text{equiv}}^2 \). Then the driven current is \(v_c^2 / v_m^3 \) larger, and significant levels of symmetric spectrum current drive of order
\[J_{\text{min}} \sim Ze n_m v^2 \nu_{\text{equiv}}^2 \nu_c q / e^2 \omega \sim Ze n_m v^2 q / e^2 \omega \] might occur for a large minority fraction near the magnetic axis since \(J_{\text{min}} / J_{bs} \sim (Z e n_m a / Z e^{1/2} n_r) \nu_c^2 / v^2 \). Also, symmetric spectrum current might be enhanced slightly by allowing larger finite orbit effects with \(\nu_{\text{equiv}} = (q v / e \omega a)^2 \rightarrow 1 \) at resonance in (5.29). We can estimate this effect using
\[\int_0^1 d\lambda \frac{\nu_c^2 (1-\nu_c^2)}{(1-\nu_c^2 (1-\lambda))} = 2 \int_0^1 dx (1-x^2)^3 = 2 \int_0^1 dx (1-x^2)^3 = 2 \int_0^1 dx (1-x^2)^3 = \frac{2}{3}\nu_c^2 - \frac{4}{3}\nu_c^2 + \frac{1}{\nu_c^2} (1 - \nu_c^2) / \nu_c^2 (1-\nu_c^2) / \nu_c^2 \nu_c^2, \] (5.35)

which for \(\nu_c^2 \rightarrow 1 \) goes to 2/3 so is 5/2 bigger. It is perhaps possible that, with all these embellishments, minority current drive by a symmetric spectrum might become viable. A substantial simulation effort will be required to determine if this is the case. One possibility is to consider an energetic helium three minority in a deuterium majority plasma to determine whether significant overall co-current is driven.

To verify that our evaluation of the amount of current that can be driven by a symmetric spectrum is sensible we can use (5.15) to estimate
\[\frac{\tilde{f}}{f_m} \sim (v_m \tau_s D_0 / \varepsilon v_e^3)[1 + O(qv_m / \varepsilon \omega)] \sim (\omega \tau_s v_{\text{quiv}}^2 v_m / \varepsilon v_e^3)[1 + O(qv_m / \varepsilon \omega)] \ll 1, \]
where we keep the finite orbit correction of order \(qv/\varepsilon \omega \) to drive a current with a symmetric spectrum. As result, we obtain an estimate consistent with (5.30), namely

\[J_{\min} = ZeB_0^{-1} (B \int d^3v \tilde{f}) \sim Ze n_m v_{\text{quiv}}^2 v_m^2 \tau_s q / \varepsilon v_e^2 r. \]

To understand the direction of symmetric spectrum driven current we first note that from (5.2) or (5.27) asymmetric heating occurs due to the finite orbit effect. When \(I v_\parallel = \sigma \tau\sqrt{1 - \lambda} < 0 \) the minorities with \(I v_\parallel < 0 \) are heated more than those with \(I v_\parallel > 0 \). We assume the Ohmic current is in the positive \(V_\zeta \) direction so that \(B_\parallel > 0 \) always. Consequently, when \(I > 0 \) in (2.2) the \(v_\parallel < 0 \) minorities are heated more than those with \(v_\parallel > 0 \). As a result, the symmetric spectrum current driven is counter-current (in the direction opposite to both the Ohmic current and the toroidal magnetic field). Moreover, when \(I < 0 \), the \(v_\parallel > 0 \) minorities are heated more and the symmetric spectrum driven current remains counter-current (opposite to the Ohmic direction, but in the direction of the toroidal magnetic field). This behavior is consistent with (5.30).

The Cottrell & Start (1991) asymmetric electron drag mechanism also heats \(v_\parallel < 0 \) \((v_\parallel > 0) \) minorities more than those with \(v_\parallel > 0 \) \((v_\parallel < 0) \) for \(I > 0 \) \((I < 0) \) so is also expected to result in symmetric spectrum minority current drive. In this case the replacement

\[I v_\parallel / R_0 B_{\rho \Phi} \omega \rightarrow (I v_\parallel / \omega \tau_s) \partial \tau_s / \partial \psi \]
in (5.30) results in a counter-current

\[J_{\min} = ZeB_0^{-1} (B \int d^3v \tilde{f}) = \frac{12Z n_m v_{\text{quiv}}^3 v_m^2 I}{5\pi^{1/2}(4v_e^2 + v_\parallel^2)\varepsilon} \partial \tau_s / \partial \psi, \]
as we expect \(\partial \tau_s / \partial \psi < 0 \). Further discussion of their mechanism will be given in the next section where we consider whether symmetric spectrum current drive can affect alphas significantly.

When the spectrum is symmetric and the species being heated Maxwellian to lowest order, then the flux surface averaged minority heating power absorbed is

\[P = (M/2) (\int d^3v v^2 Q(f_m)) = M^2 T^{-1} (\int d^3v \tilde{v} \cdot \tilde{D} \cdot \tilde{v} f_m) = M^2 T^{-1} B^{-1} \int d^3v v^2 f_m (BD / v_\parallel), \]
where we use the form \(Q(f_\parallel) = \nabla v \cdot (\tilde{D} \cdot \nabla f_\parallel) \) from Catto, Lee & Ram (2017), keep only a single wave frequency, and take \(p = 1 \). Inserting (5.27), using \(B_0 d^3v |v_\parallel| \rightarrow 2\pi Br^3vdvd\lambda \), and summing over both signs of \(v_\parallel \) yields

\[P = \frac{\pi M^2 D_0}{4\varepsilon T_e} \int_0^\infty d\lambda v^2 f_m \int_{0}^{1-\lambda} d\lambda \frac{\lambda}{\sqrt{1-\lambda}} = \frac{n_m M v_{\text{quiv}}^2 \omega}{\pi \varepsilon}, \]

(5.41)
where we assume on axis heating and \((qv/\varepsilon r \omega)^2 << 1\). No additional power is required to drive symmetric spectrum current as it is simply an inevitable side effect.

In the next section we consider the case when the minority is the energetic alphas born in deuterium-tritium reactions so the deuterium is the minority being heated and the alphas are the minority in which symmetric spectrum current is driven.

6. Symmetric spectrum current drive by alphas

The species with the largest finite poloidal gyroradius and the highest energy is the alpha particles. We can modify the treatment of the previous section to see whether a symmetric spectrum will drive appreciable alpha current. This current could be generated prior to ignition, by using deuterium (D) as the heated minority in a tritium (T) majority plasma, as the energetic minority alphas and the D have the same charge over mass ratio.

The symmetric spectrum would be first used to heat the minority D to fusion temperatures, and then as alphas are produced the symmetric spectrum could drive alpha current by taking advantage of their large poloidal gyroradius and weak collisionality.

The alpha calculation is somewhat different than the minority calculation of the previous section. The most obvious difference is that an alpha source is needed in (5.8) so it is replaced by

\[
(v_a \vec{n} + \vec{v}_a) \cdot \nabla f_0^{(0)} = \frac{C\{f_0^{(0)}\}}{4\pi v^2} + \frac{S\delta(v - v_0)}{4\pi v^2},
\]

where the alphas of mass M and charge number Z are born with birth speed \(v_0\). The coefficient of the \(\delta(v - v_0)\) function is the fusion birth rate for alphas: \(S = S(\psi) = n_T(\psi)n_D(\psi)\langle \sigma v \rangle_D^T\),

\[
(6.2)
\]

with the flux function \(\langle \sigma v \rangle_D^T\) the D-T reaction rate.

The collision operator used for alphas is a simpler version of (5.6) since we are now interested in \(v^2_a >> v^2_0 \sim v^2 >> v^2_i\):

\[
C\{f_0\} = \frac{1}{\tau_s} \nabla \cdot \left\{ \left[\frac{v^2 + v^2_c}{v^2 + v^2_c} \right] \vec{v} f_0 + \frac{v^2}{2v^2_i}(v^2 I - \vec{v} \vec{v}) \cdot \nabla \cdot f_0 \right\},
\]

\[
(6.3)
\]

where \(f_0 = f_0^{(0)} + f_0^{(1)} + \ldots\). We can assume the spatial variation of the alphas born on surfaces of constant pressure is slow compared to a typical alpha poloidal gyroradius as the source rate \(S\) and the alpha slowing down time \(\tau_s\) depend on the background species. As a result, (6.1) is satisfied by taking

\[
f_0^{(0)} = f_s(v) = \frac{S\tau_s H(v_0 - v)}{4\pi (v^2 + v^2_j)},
\]

\[
(6.4)
\]

which is the usual alpha slowing down tail distribution function with \(H(v_0 - v)\) the Heaviside step function. The density of slowing down alphas is
\[n_s = \int d^3v f_s = \mathcal{S}_s \int_0^{v_0} \frac{dv v^2}{(v^3 + v_c^3)} = \frac{\mathcal{S}_s}{3} \ln[1 + (v_0/v_c^3)] = \mathcal{S}_s \ln(v_0/v_c), \quad (6.5) \]

where we assume \(v_0^3 \gg v_c^3 \) as is the case for D-T fusion reaction. The alphas are a trace population since \(n_s/n_c \sim T_i/Mv_0^3 \ll 1 \), based on the estimate \(n_s Mv_0^3 \sim n_c T_i \).

The next order equations are similar to the minority case except the Maxwellian \(f_m \) is replaced by \(f_s \) in (5.15) to obtain
\[
\mathcal{C}\{\tilde{f}\} + Q\{f_s\} = 0. \quad (6.6)
\]

To get an estimate for the alphas when electron drag dominates we further approximate \(\mathcal{C} \) by keeping only the drag terms,
\[
\mathcal{C}\{f\} = \frac{1}{\tau_s} \mathcal{V}_s \cdot [\mathcal{V}_s (v^3 + v_c^3) v^2 f_s] = \frac{S}{4\pi} \mathcal{V}_s \cdot [\mathcal{V}_s (v^3 + v_c^3) f_s](v_0 - v),
\]

where \(\mathcal{V}_s (v^3 + v_c^3) = 4\pi \delta(v) \). Then we let \(f_0^{(1)} = \tilde{f} \) and consider
\[
(v_0 \mathcal{V}_s + \mathcal{V}_s)(v^3 + v_c^3) \mathcal{V}_s \tilde{f} - \mathcal{C}\{\tilde{f}\} = Q\{f_s\},
\]

and the *modified* adjoint equation required to treat electron drag,
\[
(v_0 \mathcal{V}_s + \mathcal{V}_s)(v^3 + v_c^3) \mathcal{V}_s \tilde{g} - \mathcal{G}\{\tilde{g}\} = -Bv_s f_s/1,
\]

where the sign of \(C \) has changed from (5.16). Multiplying the \(\tilde{f} \) equation by \((\tilde{g}/f_s)H(v_0 - v) \) and the \(\tilde{g} \) equation by \((\tilde{f}/f_s)H(v_0 - v) \), integrating over velocity space, flux surface averaging and adding gives
\[
\langle B \int d^3v v^3 H(v_0 - v) \rangle = \mathcal{I}\langle \int d^3v \tilde{g} \frac{\mathcal{V}_s (v^3 + v_c^3)}{v^3 + v_c^3} H(v_0 - v)Q\{f_s\} \rangle + \mathcal{I}\langle \int d^3v v^3 \tilde{g} \frac{\mathcal{V}_s (v^3 + v_c^3)}{v^3 + v_c^3} \rangle,
\]

where we use
\[
4\pi S^{-1} f_s^{-1} H(v_0 - v)[\tilde{g} \mathcal{C}\{\tilde{f}\} + \tilde{f} \mathcal{C}\{\tilde{g}\}] = \mathcal{V}_s \cdot [\mathcal{V}_s (v^3 + v_c^3) \mathcal{V}_s (v^3 + v_c^3) f_s](v_0 - v) + f_s^{-2} \mathcal{V}_s \mathcal{V}_s (v_0 - v) \mathcal{V}_s \cdot [\mathcal{V}_s (v^3 + v_c^3) \mathcal{V}_s (v^3 + v_c^3) \mathcal{V}_s \cdot (v^3 + v_c^3)].
\]

To lowest order (5.18) still holds. To next order we must solve
\[
\mathcal{I}\langle B/v_s \rangle \mathcal{C}\{\tilde{g}\} = \langle B^2 \rangle f_s, \quad (6.10)
\]

for the passing with the drag approximation to the collision operator, giving
\[
\frac{1}{\tau_s} \frac{\partial}{\partial v} [(v^3 + v_c^3) \tilde{g}_p] = \langle B^2 \rangle f_s / \mathcal{I}\langle B/v_s \rangle, \quad (6.11)
\]

where \(\tilde{g} \) vanishes for the trapped \((\tilde{g}_i = 0) \) and we are assuming \(v^3 \gg v_c^3 \sim v_i^3 \). For smaller \(v \) pitch angle scattering also enters, but \(\tilde{g}_p(v = 0) = 0 \) so the delta function term in (6.9) vanishes. Integrating (6.11) from \(v \) to \(v_0 \) to make \(\tilde{g}_p(v > v_0) = 0 \), we find
\[
\tilde{g}_p = -\frac{\sigma \tau_s}{\mathcal{I}\langle B/v_s \rangle} \int_v^{v_0} \frac{dv u^3}{v^3 + v_c^3} = -\sigma \tau_s B_s f_s \sqrt{1 - \lambda} \int_v^{v_0} \frac{dv u^3}{v^3 + v_c^3}, \quad (6.12)
\]

where we again assume \(\varepsilon \ll 1 \).

Using
\[
\mathcal{I}\langle B/v_s \rangle Q\{f_s\} = \frac{1}{v} \left[\frac{\partial}{\partial v} + \frac{2}{v} (1 - \lambda) \frac{\partial}{\partial \lambda} \right] \langle B \frac{BD}{v_s} \frac{\partial f}{\partial v} \rangle,
\]

(13)
and \(\tilde{f}(v > v_0) = 0 \) we find

\[
\langle B \int d^3v \tilde{f} \rangle = I \int d^3v \frac{v \tilde{g}_p}{B \mathbf{f}_s} \langle B \mathbf{f} \rangle \langle Q \{f \} \rangle = -I \int d^3v \frac{v_0}{B \tilde{g}_p} \langle BD \rangle \frac{\partial f}{\partial v} \frac{\partial}{\partial v} \langle \tilde{g}_p \rangle.
\]

(6.14)

Inserting \(\tilde{g}_p \) and \(\langle BD/v \rangle \), and summing over both signs of \(\sigma \) gives

\[
B_0^{-1} \langle B \int d^3v \tilde{f} \rangle = -\frac{\pi I D_0 T_s}{2e \rho \Omega_{RB}} \int_0^\infty dv v^3 \frac{\partial f}{\partial v} \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) \int_0^1 dl \lambda \sqrt{1 - \lambda} \left(1 - (1/v \rho \Omega_{RB})^2 (1 - \lambda) \right),
\]

(6.15)

which for \((qv/e\rho)^2 \ll 1\) reduces to

\[
B_0^{-1} \langle B \int d^3v \tilde{f} \rangle = -\frac{2\pi I D_0 T_s}{15e \rho \Omega_{RB}} \int_0^\infty dv v^3 \frac{\partial f}{\partial v} \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right).
\]

(6.16)

Using

\[
\frac{\partial f}{\partial v} = -\frac{3v^2 f}{v^3 + v_c^3} \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = -\frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right)
\]

(6.17)

along with

\[
\int_0^\infty dv v^3 \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = -v_0^6 \left(\frac{v_0}{v_c} \right)^2 = -1
\]

(6.18)

and

\[
\int_0^\infty dv v^4 f \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = \int_0^\infty dv v^4 f \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = \int_0^\infty dv f \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = -\frac{S^2}{4\pi} \left[1 + 2\{n(\nu)_c \} \right],
\]

(6.19)

we find

\[
\int_0^\infty dv v^2 \frac{\partial f}{\partial v} \frac{\partial}{\partial v} \left(\int_0^v du \frac{u^3}{u^3 + v_c^3} \right) = -\frac{S^2}{2\pi} \left[\{n(\nu)_c \} + 1 \right].
\]

(6.20)

As a result, the symmetric spectrum driven alpha current is

\[
J_{\text{alpha}} = Z e B_0^{-1} \langle B \int d^3v \tilde{f} \rangle = -\frac{Z e n D_0 T_s}{15 e \rho \Omega_{RB}}.
\]

(6.21)

Assuming \(M_n << M_D n_D \) and \(Z^2 n_s << Z^2 n_D \), we can generalize (1.7) to find \(J_s = -J_{\text{alpha}} \) in the bootstrap current we expect \(n_s/n_c \sim v_i^2/v_0^2 \ll 1 \). Comparing this alpha current to the bootstrap current we expect

\[
\frac{J_{\text{alpha}}}{J_{\text{bs}}} \sim \frac{Z e n D_0 v_i^2}{Z e n D_0 v_i^2} \frac{\omega r_a}{\omega r_a} \sim \frac{Z e n D_0 v_i^2}{Z e n D_0 v_i^2} \frac{\omega r_a}{\omega r_a}.
\]

(6.22)

Therefore, \(\omega r_a v_i^2 \sim \omega r_a v_i^2 \gg v_i^2 \) is required to have substantial symmetric spectrum alpha current driven. The alpha birth speed for D-T fusion is \(v_0 = 1.3 \times 10^9 \text{ cm/sec} \), while at 10 keV, \(v_i = 10^8 \text{ cm/sec} \) and \(v_0/v_c = 3 \) for a deuterium density approaching the tritium
density. Consequently, for a Stix parameter \(\omega \tau_s v_\text{quiv}^2 / \epsilon v_i^2 \sim 100 \) it may be possible to drive significant symmetric spectrum alpha current, especially near the axis.

We can check that (6.21) is reasonable by estimating \(\bar{Q}\{f_i\} \sim f_iD / v_0^2 \sim f_iD_0 / \epsilon v_0^2 \) and \(\bar{C}\{f_i\} \sim \bar{f} / \tau_s \) to find \(\bar{f} / f_i \sim \tau_s D_0 / \epsilon v_0^2 \sim \omega \tau_s v_\text{quiv}^2 / \epsilon v_0^2 \ll 1 \). As a result,

\[
J_{\alpha} \sim Z \epsilon n_s v_0 (\omega \tau_s v_\text{quiv}^2 / \epsilon v_0^2)(qv_0 / \epsilon \omega \rho) = Z \epsilon n_s v_\text{quiv} q / \epsilon^2 \tau_s,
\]

(6.23)
in agreement with (6.21).

The symmetric spectrum alpha counter-current drive associated with the electron drag asymmetry mechanism considered by Cottrell & Start (1991) can be estimated by making the replacement \(\tau_s / \langle B / \xi \rangle \rightarrow 1 / \langle B / \xi \tau_s \rangle = B_0^{-1}\sqrt{1-\lambda} / \langle 1 / \tau_s \rangle \) in (6.11) and (6.12) and then expanding \(\tau_s(\psi) \) about \(\tau_s(\bar{\psi}) \). The result will be that \(qv_0 / \epsilon \omega \rho \) in (6.23) is replaced by \((qv_0 / \epsilon \omega)(\tau_s / \partial \tau_s) \). More precisely, the preceding means that (6.21) becomes

\[
J_{\alpha} = Z \epsilon B_0 / \langle B \int d^3v \bar{v} \bar{f} \rangle = \frac{Z \epsilon n_s D_0 \tau_s}{15 \epsilon \omega \rho B_0}.
\]

(6.24)

This counter-current is also small, but could become interesting near the pedestal for \(\omega \tau_s v_\text{quiv}^2 / \epsilon v_0^2 \gg \epsilon v_i^2 \).

Symmetric spectrum current will be driven in the deuterium and well as the alphas, however, because its charge number is the same as that of tritium it results in no net parallel current according to (1.7). Interestingly, comparing (5.30) with (6.21), suggests that the ratio of alpha over deuterium driven currents might approach order unity

\[
\frac{J_{\alpha}}{J_D} = \frac{2\pi^{1/2} n_s v_\text{eq}^3}{9 n_D v_D^3} \sim \frac{v_\text{eq}^3}{v_D v_0^3},
\]

(6.25)

for \(1 \gg n_s / n_D \gg v_D / v_0 \). This estimate also suggests that the alpha current is significant.

For symmetric spectrum current driven alphas we assume the heated species is predominately deuterium. The flux surface averaged minority heating power absorbed by the nearly Maxwellian deuterium is evaluated as in Sec. 5 to obtain

\[
P_D = \frac{n_D M_D v_\text{quiv}^2 \epsilon}{\pi \epsilon},
\]

(6.26)
for on axis heating with \((qv / \epsilon \omega)^2 \ll 1 \). Even though the minority heating power absorbed by the alphas is roughly \(n_s M / n_D M_D \ll 1 \) smaller, (6.25) implies that it may be possible to drive significant symmetric spectrum alpha current.

In summary, (6.21) seems to give the most useful measure of the symmetric spectrum alpha current being driven when the applied power predominately goes into heating the deuterium minority.

6. Summary
The preceding sections have tried to provide insight on the treatment of effects associated with finite radial drift departures from flux surfaces. The distinction between flux and drift surfaces becomes significant whenever the poloidal gyroradius approaches radial scale lengths of interest. Section 3 demonstrates that the appearance of what seem like "radial" derivatives but are actually derivatives with respect to canonical angular momentum that appear when velocity and configuration space variables are mixed as when action-angle variables are employed. When the current and charge density for full wave treatments is evaluated using these descriptions they must be consistent with a quasilinear operator that conserves particles as noted in section 2.

In section 4 the QL operator of Catto, Lee & Ram (2017) is transit averaged over the full streaming operator including drifts as well as parallel streaming. This extension of the transit average allows the distinction between flux and drift surfaces to be retained since the transit average now follows a drifting particle rather than assuming the charge moves on a flux surface.

The generalized transit average allows finite poloidal gyroradius effects on minority heating to be evaluated in section 5 for minority heating. There it is shown that it is possible to drive a small minority counter-current with a symmetric spectrum for near Maxwellian minority species as a secondary effect. As much higher levels of heating are normally employed to obtain strong non-Maxwellian minority features it is possible that larger, desirable amounts of symmetric spectrum net co-current can be driven without any additional power input and that it might compete with the bootstrap current. Simulations will be needed to determine whether this is actually possible.

Symmetric spectrum driven alpha counter-current can also arise from minority heating of deuterium in a tritium plasma without added power input. The evaluation of this current in section 6 indicates it might be possible to drive an overall net co-current at very high heating levels, even though the energetic alpha density is much lower than the background plasma density. The driven alpha and deuterium currents seem comparable, but unlike the alphas, the deuterium current does not result in a net parallel current.

An estimate of a related finite counter-current driven by the asymmetry of the electron drag on the alphas (Cottrell & Start 1991) indicates that it might also become of interest at very high heating levels where it might conceivably compete with the bootstrap current.

To drive symmetric spectrum co-current direction requires heating \(v_\parallel > 0 \ (v_\parallel < 0) \) minorities or alphas more than those with \(v_\parallel < 0 \ (v_\parallel > 0) \) for \(I = RB_\parallel > 0 \ (I < 0) \). The examples given here drive minority counter-current with a symmetric spectrum, and thereby yield net co-current. The results presented assumed slow spatial variation of
\[\left| \tilde{e}_m \cdot \tilde{i}_{\|} + \tilde{e}_p \cdot v_{\perp} \right|^2 \] in (4.14), (4.15) and (4.18), and assumed \[\left| \tilde{e}_m \cdot \tilde{e}_e \right|^2 = \left| \tilde{e}_m \cdot \tilde{e}_s \right|^2 \] in (5.2). Another possibility is to retain the minority heating profile variation on a near poloidal gyroradius scale by Taylor expansion

\[\left| \tilde{e}_m \cdot \tilde{e}_e \right|^2 = \left| \tilde{e}_m \cdot \tilde{e}_s \right|^2 + (\psi - \tilde{\psi}_e) \partial [\tilde{e}_m \cdot \tilde{e}_e]/\partial \psi + ... = \left| \tilde{e}_m \cdot \tilde{e}_e \right|^2 + (I_{\psi} / \Omega) \partial [\tilde{e}_m \cdot \tilde{e}_e]/\partial \psi + ... \] (7.1)

Then it may be possible to focus the rf in such a way that at the resonant layer

\[\left| \tilde{e}_m \cdot \tilde{e}_e \right|^2 \partial [\tilde{e}_m \cdot \tilde{e}_e]/\partial \psi < 0. \] (7.2)

This capability would drive minority counter-current, and our minority result (5.30) would become

\[J_{\text{rf}}^{\text{min}} = \frac{12Z\eta m v_m^3 \tau_s I \partial v_{\text{quiv}}^2}{5\pi^2 \varepsilon (4v_c^3 + v_{\lambda}^3)} \partial \psi \] (7.3)

while our alpha result (6.21) would become

\[J_{\text{rf}}^{\alpha} = \frac{Z\eta m I \tau_s \partial v_{\text{quiv}}^2}{15 \varepsilon} \partial \psi \] (7.4)

since we need only make the substitution

\[I_{\psi} / \Omega \rightarrow -(I_{\psi} / \Omega) \partial [\tilde{e}_m \cdot \tilde{e}_e]/\partial \psi . \] (7.5)

It seems unlikely that precise control of the minority heating profile is practical, but nonetheless strong variation of the applied rf electric field can occur and it may be possible to detect these co and counter driven currents in simulations of symmetric spectrum minority heating at high rf levels of \(\omega \tau_{s, v_{\text{quiv}}} \gg \varepsilon v_i^2 \). The estimates in this section and the preceding sections are at best indicative of actual driven currents.

Acknowledgements

Work supported by the US Department of Energy grant DE-FG02-91ER-54109 at MIT. I am grateful to Abhay Ram for several suggestions that improved the presentation.

REFERENCES

PARRA, F. I. and CALVO, I. 2011 Phase-space Lagrangian derivation of electrostatic

Figure 1 caption
More (less) minority heating always occurs in the counter (co) current direction because the interaction time $\tau_{\text{int}} \propto q/\varepsilon$ for the counter (co) traveling minorities that are closer to (further from) the magnetic axis is longer (shorter) as shown schematically in Figure 1. Therefore, excess minority heating always occurs in the favorable counter-current direction.
Part of orbit of a co-current travelling ion

\[\omega = \Omega \]

\[2IV/\Omega \]

Part of orbit of a counter-current travelling ion

Flux surface