A Direct-Drive Exploding-Pusher Implosion as the First Step in Development of a Monoenergetic Charged-Particle Backlighting Platform at the National Ignition Facility

1Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
3Los Alamos National Laboratory, Los Alamos, NM 87545, USA
4General Atomics, San Diego, CA 92186, USA

January, 2016

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge MA 02139 USA

The experiments were supported in part by US DOE (Grant No. DE-FG03-09NA29553, No.DE-SC0007168), LLE (No.414090-G), NLUF (No.DE-NA0000877), FSC (No.415023-G), and LLNL (No. B580243). Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted.
A Direct-Drive Exploding-Pusher Implosion as the First Step in Development of a Monoenergetic Charged-Particle Backlighting Platform at the National Ignition Facility

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA

H. W. Herrmann, N. M. Hoffman, G. A. Kyrala, R. J. Leeper, R. E. Olson

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

J. D. Kilkenney, A. Nikroo

General Atomics, San Diego, CA 92186, USA

Abstract

A thin-glass-shell, D3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step towards development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (∆E/E∼4%) and isotropic source (∼3% proton fluence variation and ∼0.5% proton energy variation). On a similar shot (N130129, with D2 fill), the DD-proton spectrum has been obtained as well, illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. These results, and experiments on OMEGA, point towards future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.

Keywords: exploding-pusher implosions, charged-particle backlighting, nuclear diagnostics

1. Introduction

The proton radiography technique [1, 2] is a powerful tool in high-energy-density physics (HEDP) [3] research, providing precise images of electric and magnetic fields [4–10], as well as mass structures, in laser-generated plasma experiments. Two widely-used techniques for backlighter proton generation are the target normal sheath acceleration (TNSA) mechanism [11, 12], in which a high-intensity
laser irradiates a solid foil to accelerate protons, and monoenergetic charged-particle radiography [13, 14], which uses fusion products from D\(^3\)He-filled “exploding pusher” inertial confinement fusion (ICF) implosions. The TNSA source offers excellent spatial (∼10-20 µm) and temporal (∼1-10 ps) resolution based on the properties of the backlighter laser, and generates a continuous spectrum of protons. The monoenergetic backlighting technique is particularly valuable in that it produces particles of a well-defined energy (∆E/E∼2-5%) and superior uniformity of proton, alpha, and triton emission, enabling highly quantitative measurements. Additionally, the use of particles at different discrete energies allows for discrimination between electric and magnetic field effects and for studies of stopping power using the energy downshift of charged-particle spectra.

Monoenergetic charged-particle backlighting has been implemented and used extensively at the OMEGA laser facility [15]. This technique has provided quantitative information about fields produced in laser-foil interactions [16, 17], magnetic reconnection [18, 19], the Weibel instability [20], direct-drive ICF implosions [21–23], and indirect-drive ICF hohlraums [24, 25]. In addition, this monoenergetic proton source has been used in experiments at OMEGA to study stopping power in warm dense matter (WDM) [26]. Though the monoenergetic charged-particle backlighting platform is well-established at OMEGA, it is only beginning to be implemented at the National Ignition Facility (NIF) [27], where a significantly greater laser energy, laser power, and spatial scale enables new regimes of HEDP experiments.

Presented here are results from a directly-driven D\(^3\)He-filled, thin-glass-shell exploding pusher implosion (shot N121128) [28], which serves as a promising first step toward the development of a baseline implosion design for monoenergetic charged-particle backlighting at the NIF. This experiment represents the first demonstration at the NIF of a monoenergetic proton source. Though this shot was conducted for diagnostic development and calibration, valuable ride-along data have been obtained, showing that this implosion serves as a useful guidepost for implementation of a monoenergetic charged-particle backlighting platform. The remainder of this paper is organized as follows: Section 2 describes the experimental setup and principal measurements that characterize this implosion and its utility as a monoenergetic proton source; and Section 3 discusses the next steps required in the implementation and usage of a monoenergetic charged-particle backlighting platform at the NIF.

2. Experimental Setup and Results

NIF exploding-pusher shot N121128 used a 1682-µm diameter, 2.2 g/cm\(^2\) SiO\(_2\) shell with a wall thickness of 4.3 µm, filled with 9.1 atm of D\(^3\)He gas (3.3 atm D\(_2\) and 5.8 atm D\(^3\)He). The capsule was coated with 0.03 µm Al to reduce the leak rate of D\(^3\)He out of the capsule.\(^6\) The capsule was irradiated by 192 NIF beams in the polar-direct-drive (PDD) configuration [29], delivering 43.4 kJ of laser energy in a 1.4-ns ramp pulse. The laser pulse and capsule properties are illustrated in Figure 1 and summarized, along with the principal experimental measurements, in Table 1.

![Figure 1](image_url)
Figure 1: (Color online) Experimental laser power history and capsule and laser parameters (inset) from NIF D\(^3\)He exploding pusher shot N121128. The time of peak D\(^3\)He-proton emission (bang time) at \(t = 1.88\) ns, several hundred ps after the end of the laser pulse (∼1.4 ns), is shown (see Figure 2 for the raw proton bang time data).

This implosion produced copious DD and D\(^3\)He fusion reactions:

\[
D + D \rightarrow ^3\text{He}(0.82 \text{ MeV}) + n(2.45 \text{ MeV}),
\]

\[
D + D \rightarrow T(1.01 \text{ MeV}) + p(3.02 \text{ MeV}), \text{ and}
\]

\[
D + ^3\text{He} \rightarrow \alpha(3.6 \text{ MeV}) + p(14.7 \text{ MeV}).
\]

The monoenergetic particle backlighting platform will be designed to utilize the D\(^3\)He protons and alphas (Equation 3) as well as the DD protons and tritons (Equation 2). Shot N121128 was diagnosed through measurements of DD-neutron (Equation 1) emission using the neutron time-of-flight (nTOF) suite [30] and primarily through measurements of D\(^3\)He-proton emission using wedge range filter (WRF) proton spectrometers [31–33] and the particle time-of-flight (pTOF) diagnostic [34]. As has been described in detail elsewhere [28], the nTOF-measured DD-neutron yield was \(7.27 \times 10^{10}\) (and based on the DD-n/DD-p branching ratio of ∼0.98 at the measured DD-burn-averaged ion temperature of 7.1 keV, the DD-proton yield is expected to have been \(7.4 \times 10^{10}\); the WRF-measured D\(^3\)He-proton yield was \(2.09 \times 10^{10}\). Uncertainty in the DD-n yield measurement was ∼±10%, while uncertainty in

\(^6\)The fill was intended to be 3.3 atm D\(_2\) and 6.7 atm D\(^3\)He for an equimolar mixture, but 0.9 atm of D\(^3\)He leaked out of the capsule in the 15 hours it was removed from the pressure vessel before it was shot, based on a leak rate half-life of 76 hours.
the D^4He-p yield measurement was around ±3% based on excellent spatial uniformity of the inferred proton yields. Yields of this magnitude are more than sufficient for charged-particle backlighting experiments at the NIF, where ideal particle fluences of ∼10^5 cm^-2 would be achieved at CR-39 [35, 36] detectors positioned 50-200 cm from the experiments. Burn-averaged ion temperatures inferred from the Doppler width of the fusion-product spectra were inferred to be 7.1±0.5 keV averaged over the DD-n reactions (measured by nTOFs) and 11.0±2.0 keV averaged over the D^4He reactions (measured by WRFs) [28].

Table 1: Capsule and laser parameters and principal experimental measurements for NIF exploding pusher shot N121128, including: capsule outer diameter d; shell thickness Δr; total laser energy; approximate laser pulse duration; D_2 fill pressure; ^3He fill pressure; DD-n yield; D^4He-p yield; D^4He-p bang time (BT); approximate x-ray burn duration (based on similar shots); DD-burn-averaged ion temperature; D^4He-p burn-averaged ion temperature; DD/ ^3He yield-ratio-inferred ion temperature; and total ρR.

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Laser</th>
<th>Gas Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>d (µm)</td>
<td>Δr (µm)</td>
<td>Energy (kJ)</td>
</tr>
<tr>
<td>1682</td>
<td>4.3</td>
<td>43.4</td>
</tr>
<tr>
<td>D^4He-p</td>
<td>X-Ray</td>
<td>BT</td>
</tr>
<tr>
<td>(ns)</td>
<td>(ns)</td>
<td>(keV)</td>
</tr>
<tr>
<td>1.88±0.10</td>
<td>0.20±0.10</td>
<td>7.1±0.5</td>
</tr>
</tbody>
</table>

Yields of this magnitude are more than sufficient for charged-particle backlighting experiments at the NIF, where ideal particle fluences of ∼10^5 cm^-2 would be achieved at CR-39 [35, 36] detectors positioned 50-200 cm from the experiments. Burn-averaged ion temperatures inferred from the Doppler width of the fusion-product spectra were inferred to be 7.1±0.5 keV averaged over the DD-n reactions (measured by nTOFs) and 11.0±2.0 keV averaged over the D^4He reactions (measured by WRFs) [28].

The difference between DD-burn-averaged and D^4He-burn-averaged ion temperatures is likely a consequence of the difference in temperature dependence of the fusion reactivity of reactions 1 and 3, with DD (D^4He) reactions weighted more strongly to the cooler (hotter) regions of the fuel. Thermal decoupling of ^3He and deuterium ions (with ^3He ions hotter due to stronger heating by the shock) [37] is another possible contributing factor. Using an independent measurement technique based on the ratio of DD and D^4He yields [38], the ion temperature was inferred to be 6.9±1.0 keV, in reasonable agreement with the linewidth-inferred ion temperature. The total ρR was inferred from the downshift of the D^4He-p spectrum to be 9±4 mg/cm^2. The time of peak D^4He-p emission (bang time) was measured by pTOF to be 1.88±0.10 ns, several hundred ps after the end of the laser pulse [28]. The pTOF trace obtained on shot N121128, originally presented in Ref. [28], is shown in Figure 2, illustrating a robust D^4He-p signal and minimal x-ray background.

X-ray measurements were also used to diagnose this implosion. The time of peak x-ray emission (x-ray bang time) was measured by the South Pole Bang Time (SPBT) diagnostic [39] and the hardened gated x-ray imager (hGXI) [40] to be 1.96±0.07 ns and 2.04±0.12 ns, respectively. On shots roughly comparable to N121128, N130129 and N110131 [28], hGXI or the gated x-ray detector (GXD) [41] measured the full-width at half maximum (FWHM) of x-ray emission to be ~0.20±0.10 ns. This measurement serves as a useful approximation (slight overestimate) of the duration of fusion emission, and in future charged-particle backlighting experiments it will be important to directly obtain the fusion reaction history. In monoenergetic backlighting experiments on OMEGA, the D^4He-p burn duration was measured to be shorter, around 80-120 ps [13], using smaller capsules with a 420 µm diameter. Figure 3 shows an hGXI x-ray self-emission image roughly 100 ps before bang time, originally presented in Ref. [28]; the image reveals a slightly oblate implosion with a second Legendre mode magnitude of P2/P0 = -0.13, and an overall radius of x-ray emission of 168 µm. The x-ray emission radius at bang time is extrapolated to be ~150 µm. The x-ray image gives an approximate size of the fuel region, though for monoenergetic particle backlighting it will be ideal to obtain an image of the fusion emission in order to directly characterize the particle source size. According to data obtained on previous experiments (discussed in Appendix A), there is a correlation between x-ray radius and fusion emission radius, with the fusion emission region of order 60% the size of the shell as inferred from x-ray emission. Though for stopping power experiments the fusion source size is not important, for proton radiography experiments the fusion source size sets the spatial resolution. A fusion emission radius of order 100 µm is a factor of ~4 larger than has been produced in proton radiography experiments on OMEGA, and a smaller source size is desired.

WRF-measured D^3He-proton spectra, two of seven obtained at different positions on shot N121128, are shown in Figure 4. The proton spectra show a narrow, well-defined spectral line, with a mean energy of ⟨E⟩ = 14.45±0.06 MeV (position 0-0-4) and ⟨E⟩ = 14.39±0.06 MeV (position 90-78-1). The average over all seven positions is

8SPBT gives x-ray bang time measurements, but not burn duration.
9D LLAC simulations show that for this class of implosion, the nuclear burn duration is slightly shorter than the x-ray burn duration, by around 10-50%. These simulations also indicate that the peak time of x-ray emission occurs of order 100 ps after the peak of D^3He emission, which was also observed on shot N121128.
He-p signal obtained on shot N121128, used to infer the proton bang time. A forward fit to this data shows that the D³He-p bang time is 1.88 ns, as indicated in Figure 1. This data was originally presented in Ref. [28]. Reproduced with permission from Phys. Plasmas 21, 122712 (2014). Copyright 2014, AIP Publishing LLC.

Figure 3: (Color online) hGXI x-ray self-emission of the D³He fuel region ~100 ps before bang time in shot N121128. The image, with the contour corresponding to 10% of the peak emission magnitude (white line) indicated, shows an average P₀ =168 µm and a P₂/P₀ = -0.13 (13% oblate). The P₀ at bang time is extrapolated to be ~150 µm. The image predominantly represents x-ray emission in the energy range of 8-10 keV. This data was originally presented in Ref. [28]. Reproduced with permission from Phys. Plasmas 21, 122712 (2014). Copyright 2014, AIP Publishing LLC.

14.42 MeV, with minimal variation, as discussed further below. The spectral width after subtracting in quadrature the WRF instrumental broadening is σ = 0.25 MeV, which corresponds to a D³He-burn-averaged ion temperature of 11.0 keV as noted above. To quantify the monoenergetic character of this proton source, the energy spread ΔE is defined as the full-width at half-maximum (FWHM) of the D³He-p spectrum (FWHM = 2√2 ln 2 σ = 0.59 MeV), and ΔE/⟨E⟩ = 0.59/14.42 = 4%. The monoenergetic character of the proton (or alpha or triton) spectra enables quantitative inferences of electric and magnetic field strengths from particle deflection in radiography experiments or precise measurements of energy loss in stopping power experiments. For radiographic applications, the particle deflection angle due to electric (magnetic) fields is inversely proportional to the particle energy (velocity), so an energy (velocity) spread of 4% (2%) produces blurring of only a small percentage of the total deflection. This is especially valuable in diagnosing filamentary magnetic field structures as are expected to be produced in upcoming collisionless shock experiments at the NIF.

Though the DD-proton spectrum was not measured on this experiment, the modest energy downshift of the D³He-p spectrum (from 14.7 MeV to 14.42 MeV) and DD-proton measurements obtained on a similar exploding pusher shot, D₂ filled N130129 [42], indicate that the ~3-MeV DD protons are readily usable as well for charged-
of NIF chamber to mea-

of NIF chamber to mea-

3. Implementation of the Monoenergetic Charged-Particle Backlighting Platform at the NIF

Subsequent steps in the development of the monoenergetic charged-particle backlighting platform at NIF both utilize existing capabilities and require the implementation of new capabilities.

Many of the same instruments used to diagnose shot N121128, and several additional instruments, will be used to characterize a monoenergetic proton, alpha, and triton source at the NIF, based on the measurements described above. WRF proton spectrometers will be fielded at several different positions around the NIF chamber to mea-

<table>
<thead>
<tr>
<th>WRF Position</th>
<th>Dist. (cm)</th>
<th>D$_3^3$He-p Yield (10^{14})</th>
<th>D$_3^3$He-p Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equator-1</td>
<td>50</td>
<td>2.01</td>
<td>14.39</td>
</tr>
<tr>
<td>Equator-3</td>
<td>50</td>
<td>2.17</td>
<td>14.34</td>
</tr>
<tr>
<td>Equator-4</td>
<td>50</td>
<td>2.14</td>
<td>14.40</td>
</tr>
<tr>
<td>Eq. Avg.</td>
<td></td>
<td>2.11</td>
<td>14.38</td>
</tr>
<tr>
<td>Pole-1</td>
<td>200</td>
<td>2.00</td>
<td>14.54</td>
</tr>
<tr>
<td>Pole-2</td>
<td>200</td>
<td>2.05</td>
<td>14.49</td>
</tr>
<tr>
<td>Pole-3</td>
<td>200</td>
<td>2.11</td>
<td>14.36</td>
</tr>
<tr>
<td>Pole-4</td>
<td>200</td>
<td>2.15</td>
<td>14.45</td>
</tr>
<tr>
<td>Pole Avg.</td>
<td></td>
<td>2.08</td>
<td>14.46</td>
</tr>
<tr>
<td>Overall Avg.</td>
<td></td>
<td>2.09</td>
<td>14.42</td>
</tr>
</tbody>
</table>

Of particular importance for charged-particle backlighting is the spatial uniformity of both the emitted particle fluence and the emitted particle energy. Measurements of the uniformity of the D$_3^3$He-proton spectrum on shot N121128, based on seven WRFs (three near the equator (90, 78) and four near the pole (0, 0) relative to the NIF geometry) are shown in Table 2 and illustrated visually in Figure 5. The spectra shown in Figure 4 are taken from the Pole-4 and Equator-1 WRFs. These data show that the emitted D$_3^3$He-proton spectrum was extremely uniform in both fluence and energy on shot N121128. The average fluence variation is <2% from pole to equator, with a 3% standard deviation overall. The high degree of fluence isotropy is enabled by designing the implosion so that nu-

![Figure 5: (Color online) WRF-measured D$_3^3$He-p (a) yield and (b) energy as a function of polar angle on NIF for shot N121128. Excellent uniformity is observed, to ~+3% in inferred yield and ~±70 keV (~±0.5%) in energy, smaller than measurement uncertainties, as discussed in Table 2.](image-url)
sion and a high degree of isotropy of both proton fluence and energy. While all 192 beams were used to drive shot N121128, in a charged-particle backlighting experiment many fewer beams would be used, as some beams are needed to drive the primary target. A proposed design calls for 6 NIF “quads”, with 24 beams in total, to drive the backlighter implosion at a similar laser energy (∼40 kJ) to that used on shot N121128. Even under such conditions, excellent isotropy in particle fluence and energy is likely to be achieved in this exploding-pusher implosion, which have been shown in OMEGA experiments to be largely insensitive to illumination non-uniformities [50]. If greater drive uniformity on the backlighter capsule is required, it may also be possible to use an indirectly-driven exploding-pusher implosion, with a hole or a thin patch in the hohlraum wall in the direction of the subject plasma [51]. This would likely have to be driven by around half of the NIF beams in order to deliver ∼0.6-1.0 MJ, as has been used in other indirectly-driven exploding pushers on NIF [52]. Excellent proton fluence isotropy has been observed through the hohlraum equator on indirectly-driven implosions at the NIF [53], and so indirectly-driven backlighter implosions would be expected to produce a similarly good fluence isotropy. A 24-beam backlighter direct-drive configuration would leave up to 168 beams available to drive targets for studies of electric and magnetic fields and flows in indirect-drive ignition-scale hohlraums, polar-direct-drive implosions, collisionless shocks, and other ICF or HEDP experiments, as well as studies of stopping power in WDM and classical plasmas.

Most directly, the next steps in the development of the NIF monoenergetic charged-particle backlighting platform begin with experiments to characterize the charged-particle emission — including particle energies, spectral widths, and source profiles — for a 24-beam implosion source. These experiments, starting from the baseline conditions of shot N121128, seek to confirm that a 24-beam implosion using a similar laser energy and pulse shape produces similar particle yield, energy, and isotropy and that such an implosion is insensitive to drive asymmetries and beam selection. Initial tests are planned for the use of 24 NIF beams from the 45° and 50° drive cones (relative to the up-down axis of the NIF chamber) evenly split between the upper and lower hemispheres; later tests may use 16 or 32 beams from within the 45° degree cones in both hemispheres or a one-sided drive using the 45° and 50° degree cones from a single hemisphere for possible use in charged-particle radiography of half-hohlraums. A subsequent step will involve attempting to reduce the size of the charged-particle source using a smaller capsule, though this will require the removal of phase plates so as to produce sufficiently small laser beam profile on NIF, as has been done previously on OMEGA [13]. As discussed above, another crucial step is the installation and refinement of additional diagnostics, including penumbral imaging, lower-energy charged-particle spectrometry, nuclear burn history measurements, and the proton radiography diagnostics. The first experiments to utilize this charged-particle backlighting platform
are scheduled to follow this development process.

The authors thank R. Frankel, E. Doeg, M. Cairel, M. Valadez, and M. McKernan for contributing to the processing of CR-39 data used in this work, as well as the NIF operations crew for their help in executing these experiments. This work was conducted in partial fulfillment of the first author’s PhD thesis and supported in part by US DoE (Grant No. DE-NA0001857), FSC (No. 5-24431), LLE (No. 415935-G), and LLNL (No. B600100).

Appendix A. Nuclear Burn Imaging Data in Previous Exploding Pusher Experiments on OMEGA

As discussed above, the size of the fusion emission region is a critical property of the monoenergetic charged-particle source. While spatially-resolved measurements of the fusion burn region have not yet been obtained directly on the NIF, previous exploding pusher experiments on OMEGA provide valuable insight into trends in the fusion source size.

![OMEGA Exploding Pushers D³He Burn Radius](image)

Figure A.6: (Color online) Measured ratio of the nuclear burn radius to x-ray-measured minimum shell radius as a function of initial D³He gas density in exploding pusher experiments at OMEGA. These experiments used 2.3 µm thick, 860 µm diameter SiO₂ shells filled with equimolar D³He gas and irradiated by 14.6 kJ laser energy (60 beams) in a 0.6 ns square pulse [46, 54]. The nuclear burn radius is characterized as the radius containing 50% of the D³He yield (\(R_{50,D³He}\)) [54], while the x-ray minimum shell radius (\(R_{shell,x-ray}\)) is approximately the radius of peak x-ray emission in the shell at stagnation. A near-constant ratio of \(R_{50,D³He}/R_{shell,x-ray}\approx 0.58\) is observed.

A consistent correlation has been observed in some exploding-pusher experiments on OMEGA [46, 54] between the measured fusion emission size and the radius of the shell as inferred from x-ray images. These measurements were obtained on implosions with a 2.3 µm thick, 860 µm diameter SiO₂ shell, containing different densities of equimolar D³He gas and irradiated by 60 OMEGA laser beams that delivered 14.6 kJ in a 0.6 ns pulse. The D³He-p emission radius was measured using the Proton Core Imaging System (PCIS) [49, 54–56] and quantified as the radius containing 50% of the fusion reactions (\(R_{50,D³He}\)).

Additionally, a different set of prior exploding pusher experiments on OMEGA have demonstrated a trend of increasing burn radius with increasing laser energy [56]. These experiments used 1.8-2.3 µm, 940 µm diameter SiO₂ shells filled with 18 atm (2.4 mg/cm³) equimolar D³He gas and irradiated by 60 OMEGA laser beams in a 0.6 ns square pulse [56]. The nuclear burn radius is characterized as the radius containing 50% of the D³He yield. This data was originally presented in Ref. [56]. Reproduced with permission from Phys. Plasmas 13, 082704 (2006). Copyright 2006, AIP Publishing LLC.

Figure A.7: (Color online) Measured D³He burn radius as a function of laser energy in exploding pusher experiments at OMEGA. These experiments used 1.8-2.3 µm thick, 940 µm diameter SiO₂ shells filled with 18 atm (2.4 mg/cm³) equimolar D³He gas and imploded by 60 OMEGA laser beams in a 1-ns square pulse at a variety of total laser energies. As described above, the D³He fusion emission was measured using PCIS. The D³He-p emission size (again characterized as the radius containing 50% of the reactions, \(R_{50,D³He}\)) is shown as a function of the incident laser energy in Figure A.7. The measurements show a monotonic and nearly linear trend of increasing fusion emission radius with laser energy. Though this parameter sweep represents only one set of exploding pusher conditions, the observed trend suggests that for purposes of proton radiography where having a small source size is critical, a lower laser energy may be preferable. These results ought to be considered when designing and optimizing a charged-particle backlighter at
the NIF.

