Magnetorotational stability in a self-consistent three dimensional axisymmetric magnetized warm plasma equilibrium with a gravitational field

Peter J. Catto and Sergei I. Krasheninnikov

May, 2016

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge MA 02139 USA

This work was supported by the U.S. Department of Energy, Grant No. DE-FG02-91ER-54109. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted.

Submitted to the Journal of Plasma Physics (May 2016)
Magnetorotational stability in a self-consistent three dimensional axisymmetric magnetized warm plasma equilibrium with a gravitational field

Peter J. Catto1 and Sergei I. Krasheninnikov2
1Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA
2Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA

Abstract
Magnetorotational stability is revisited for self-consistent three-dimensional magnetized hot plasma equilibria in a gravitational field. The eikonal analysis presented finds that magnetorotational stability analysis must be performed with some care to retain compressibility and density gradient effects, and departures from strict Keplerian motion. Indeed, retaining these effects highlights differences between the magnetorotational instability found in the absence of gravity [Velikhov 1959 Sov. Phys. JETP 36, 995-998] and that found the presence of gravity [Balbus and Hawley 1991 Astrophys. J. 376, 214-222]. In the non-gravitational case, compressibility and density variation alter the stability condition, while these effects only enter for departures from strict Keplerian motion in a gravitational field. The conditions for instability are made more explicit by employing recent magnetized equilibrium results [Catto, Pusztai and Krasheninnikov 2015 J. Plasma Phys. 81, 515810603], rather than employing a hydrodynamic equilibrium. We focus on the stability of the $\beta > 1$ limit for which equilibria were found in the absence of a toroidal magnetic field, where $\beta = \text{plasma/magnetic pressure}$.

1. Background
The groundbreaking effort of Velikhov (1959) and the pioneering work of Balbus and Hawley (1991) has led to a generally accepted explanation that the magnetorotational instability (MRI) is responsible for the existence of turbulence in accretion disks and provides a possible anomalous transport mechanism for particle accretion by compact astrophysical objects while angular momentum is transport outward. Cylindrical numerical simulations retaining the drive for magnetorotational instability indicate that the flow in the washer shaped disk becomes turbulent with angular momentum redistribution (Hawley and Balbus 1991). Later simulations observed turbulent angular
momentum distribution by continuing to omit the vertical component of gravity and neglecting pressure and density gradients (Hawley et al. 1995). These results have all tended to focus on the incompressible limit since the instability was thought to be rather insensitive to compressibility. Even more recent simulations (Stone et al. 1999; Stone & Pringle 2001) apply a vertical magnetic field to the polytropic (or adiabatic) hydrodynamic equilibrium of Papaloizou and Pringle (1984). Other treatments exist (Ogilvie 1998), but all treatment seem to assume strict Keplerian motion by which we mean the gravitational and centrifugal forces are in exact balance at the equatorial plane. Here we assume a magnetized equilibrium and allow for general compressibility, more general rotational motion allowing an imbalance between the gravitational and centrifugal forces, and a fully self-consistent equilibrium with density variation. We find that all these ingredients are important in the overall stability threshold. However, when the motion is strictly Keplerian we show that both compressibility and density variation effects are absent, but departures from an axial magnetic field provide further destabilization. Interestingly, in the non-gravitational, axial magnetic field limit of Velikhov (1959) we find that density gradient effects are always present for a careful treatment of compressibility.

The MRI is thought to play a role in the formation of stars (Stone et al. 2000), the production of X-rays in neutron star and black hole systems (Blaes 2004), and the creation of gamma ray bursts (Wheeler 2004). Local numerical investigations indicate that the magnetorotational instability allows mass to be accreted by the central compact object while angular momentum is transported radially outwards (Hawley, Gammie and Balbus 1995 & 1996; Stone et al. 1996) and that the instability might result in a magnetohydrodynamic (MHD) accretion disk dynamo generating a self-sustaining magnetic field. Consequently, a re-examination of stability for a fully self-consistent rotating and magnetized global gravitational equilibrium with compressibility and density gradient effects retained is a natural and needed step.

The lack of a fully self-consistent magnetized three-dimensional equilibrium in the presence of gravity is a shortcoming of previous work that can now be better addressed thanks to the self-similar equilibrium model recently formulated by Catto and Krasheninnikov (2015) and solved analytically and numerically by Catto et al. (2015). This global equilibrium model allows, but does not require, strict Keplerian motion in the
equatorial plane. It fully retains the imbalance between the cylindrical centrifugal force and the central gravitational force that makes disk equilibria possible for some parameter ranges. Moreover, the condition for unstable modes to fit in the plasma disk results in the disk width entering the condition for instability. Catto et al. have shown numerically that the $\beta \ll 1$ equilibria found analytically by Catto and Krasheninnikov (2015) actually require a toroidal magnetic field as well. However, in the more interesting $\beta > 1$ limit, both numerical and analytic equilibrium solutions are found without a toroidal magnetic field. The work herein only considers magnetorotational stability in this zero toroidal magnetic field limit, since retaining it substantially complicates the analysis.

In the following sections we re-consider ideal magnetohydrodynamic magnetorotational stability. We begin by briefly summarizing in section 2 the axisymmetric equilibrium equations for a general poloidal magnetic field satisfying the constraints imposed by the kinetic equation for a drifting Maxwellian (Hinton and Wong 1985; Catto et al. 1987; Helander 2014). In section 3 we then derive the linearized equations for an arbitrary axisymmetric perturbation in a hot, compressible, finite β, magnetized plasma rotating in a gravitational field. We then investigate the general magnetorotational stability condition for arbitrary β when the magnetic field is assumed axial. The results without gravity in section 4 are consistent with Velikhov (1959), and the eikonal results of sections 5 and 6 with gravity reduce to Balbus and Hawley (1991) in the strict Keplerian limit. The Velikhov case without gravity is considered to illustrate our analysis technique in the simplest possible limit and to contrast its differences with the gravitational cases that follow. A self-consistent equilibrium without gravity (Catto and Krasheninnikov 2015) allows us to make a further connection to the seminal work of Velikhov (1959) in the unbounded plasma limit (most of Velikhov's analysis is for plasma bounded by two rotating cylindrical surfaces). Unlike Velikhov, we allow compressibility and radial density variation. To make further connections to the insightful astrophysical work of Balbus and Hawley (1991) we retain compressibility and density gradient effects when the rotation is not strictly Keplerian as both impact the stability threshold. Moreover, we also apply our stability results to the self-consistent magnetized gravitational equilibrium recently of Catto et al. (2015). In this case we account for the thinness of the self-consistent plasma disk width when $\beta \gg 1$. In section 7 and the Appendix we consider the stability of arbitrary β, non-axial, magnetic field equilibria.
2. Equilibrium

We consider the stability of a hot, axisymmetric magnetized plasma rotating toroidally in a gravitational field. We assume the unperturbed axisymmetric magnetic field, \vec{B}_0, has no toroidal component so we can write

$$\vec{B}_0 = \nabla \psi_0 \times \nabla \zeta,$$

(2.1)

where ζ is the toroidal angle and ψ_0 is the unperturbed poloidal flux function. The unperturbed velocity \vec{V}_0 must be toroidal to satisfy the constraints ($\vec{B}_0 \cdot \nabla \vec{V}_0 = 0$ and $\vec{B}_0 \cdot \nabla T_0 = 0$) imposed on a drifting Maxwellian solution in an axisymmetric system by the gyroaveraged kinetic equation in the presence of Coulomb collisions (Hinton and Wong 1985; Catto et al. 1987; Helander 2014):

$$\vec{V}_0 = \Omega R^2 \nabla \zeta,$$

(2.2)

where the toroidal rotation frequency Ω is related to the electrostatic potential Φ_0 by $\Omega = c d\Phi_0 / d\psi_0$ with the electric field given by $\vec{E}_0 = -\nabla \Phi_0 = -\nabla \psi_0 d\Phi_0 / d\psi_0$, R the cylindrical radius from the axis of symmetry, and c the speed of light. We have used $c \nabla \Phi_0 = \vec{V}_0 \times \vec{B}_0$ and $\vec{B}_0 \cdot \nabla \Phi_0 = 0$ to find that the electrostatic potential Φ_0, and therefore Ω, must be a flux function to lowest order. The ideal gas relation between the total unperturbed pressure p_0 and the ion density n_0, $p_0 = n_0 (T_{0i} + Z T_{0e}) = 2 n_0 T_0$, defines the effective temperature T_0, with T_{0i} and T_{0e} the unperturbed ion and electron temperatures.

We write the gravitational potential G as

$$G = - G_0 M_0 / r,$$

(2.3)

with G_0 the gravitational constant, r the spherical radius, and M_0 the mass of the astrophysical body that is assumed to be a massive localized source centered at $r = 0$, such that $R = r \sin \theta$ with θ the angle from the axis of symmetry. We define our spherical and cylindrical coordinates to satisfy $r \nabla \theta = R \nabla \zeta \times R \nabla r$ and $\nabla z = R \nabla R \times R \nabla \zeta$.

The hot magnetized plasma must adjust its flux surfaces to satisfy Ampere's Law and total momentum balance under the influence of the attractive force of gravity and the outward centrifugal and plasma pressure forces:

$$c^{-1} \nabla \times \vec{B}_0 = \nabla p_0 + M n_0 (\nabla G + \vec{V}_0 \cdot \nabla \vec{V}_0) = M n_0 (\nabla G - \Omega^2 R \nabla R) + \nabla (2 n_0 T_0),$$

(2.4)

where M is the mass of the plasma ions and the plasma is quasineutral ($Z n_0 = n_0 e = \text{electron density}$, with Z the charge number of the ions). Importantly, the density must satisfy total parallel momentum balance

$$\vec{B}_0 \cdot \nabla [2 G - \Omega^2 R^2 + (4 T_0 / M) / n(n_0 / \eta_0)] = 0,$$

(2.5)
with both T_0 and the unperturbed normalizing density η_0 (which we refer to as the psuedo-density to distinguish it from n_0) flux functions,

$$\tilde{B}_0 \cdot \nabla T_0 = 0 = \tilde{B}_0 \cdot \nabla \eta_0, \quad (2.6)$$

and \ln the natural logarithm. The density and pseudo-density are related by a poloidally varying Maxwell-Boltzmann exponential factor κ_0 that conveniently accounts for the mismatch between the centrifugal and gravitational potentials

$$n_0 = n_0(\psi, \theta) = \eta_0(\psi) e^{\kappa_0(\psi, \theta)} = \eta_0(\psi) e^{\kappa_0(\psi, 0)}. \quad (2.7)$$

The parallel momentum constraint determines κ_0 within a flux function that can be set to zero by absorbing it into the pseudo-density η_0. As a result, (2.5) and (2.7) yield

$$4T_0/M \kappa_0 = \Omega^2 R^2 - 2G, \quad (2.8)$$

showing that the flux surfaces and poloidal variation of the density in the plasma pressure must adjust to maintain parallel force balance between the inward central gravitational force and the outward cylindrical rotation.

The preceding constraints differ from a true hydrodynamic equilibrium. For a drifting Maxwellian to satisfy the Boltzmann equation, constant T_0, Ω and η_0 are required in the Maxwell-Boltzmann density relation $n_0 = \eta_0 \exp(M/2T_0)(\Omega^2 R^2 - 2G)$. If we allow $\Omega = \Omega(R)$, using $\nabla \times \nabla G = 0$ in the momentum conservation, $n_0 \nabla p_0 = M(\nabla G - \Omega^2 RV)\nabla$, gives $\nabla n_0 \times \nabla T_0 = 0$. However, we desire a solution with $n_0 = n_0(R, z)$, so we need to keep T_0 constant. Keeping η_0 constant, then $n_0 = \eta_0(R) \exp(M/T_0)(f dR \Omega^2 R^2 - G)$. Then for example, angular momentum can be preserved by assuming constant ΩR^2, to obtain $n_0 = \eta_0 \exp[-(M/2T_0)(\Omega^2 R^2 + 2G)]$. Perhaps, more interestingly, assuming $\Omega^2 R^2 = M \mu G_0$ and defining $2g = M \mu G_0/T_0 R_0$, with R_0 an arbitrary equatorial plane reference location, gives $n_0 = \eta_0 \exp[-2g((R_0/R) - (R_0/r))]$, with $r > R$ so that $n_0/\eta_0 < 1$ Notice that $n_0(r=R)= \eta_0$ is the density at the equatorial plane, and that for $g >> 1$ a thin plasma disk occurs.

The $\nabla \psi_0$ and ∇r components of Ampere's law, $c \nabla \times \tilde{B}_0 = 4\pi \tilde{J}_0$, require $\tilde{J}_0 \cdot \nabla \psi_0 = 0$ and $\tilde{J}_0 \cdot \nabla r = 0$ giving $\tilde{J}_0 \cdot \tilde{B}_0 = 0$. As a result, there is only unperturbed current in the toroidal direction

$$\tilde{J}_0 = \int_0 \nabla G \nabla \zeta = (cM n_0 /B_0^2) \nabla \psi_0 \cdot [(2/M n_0) \nabla (n_0 T_0) + \nabla G - \Omega^2 R^2 V] \nabla \zeta. \quad (2.9)$$

The toroidal component of Ampere's law gives the Grad-Shafranov equation,

$$\nabla \cdot (R^2 \nabla \psi_0) = -(4\pi M n_0 /R^2 B_0^2) \nabla \psi_0 \cdot [(1/M n_0) \nabla p_0 + \nabla G - \Omega^2 R^2 V] = -4\pi J_0/cR, \quad (2.10)$$

that must be solved to find the equilibrium flux surfaces.
3. Linearized equations

Linear stability is normally examined by perturbing about a presumed equilibrium to find the conditions instability. However, a self-consistent equilibrium normally imposes additional constraints that can determine whether these unstable conditions are accessible. Consequently, the actual stability of a system can only be determined for a fully self-consistent equilibrium. Said another way, we want to avoid instability being an artifact of perturbing around a state that has not fully relaxed to a self-consistent magnetized equilibrium. Consequently, we perturb about an equilibrium satisfying (2.5) and (2.10).

We investigate the stability of our axisymmetric equilibrium to axisymmetric perturbations. We denote linearized quantities by a subscript "1" except for B_z, the toroidal component of the perturbed magnetic field \tilde{B}_1, and the displacement vector $\tilde{\xi}$, which is related to the perturbed velocity \tilde{V}_i by

$$\frac{\partial \tilde{\xi}}{\partial t} = \tilde{V}_i.$$ \hfill (3.1)

The total (unperturbed plus perturbed) conservation of number and energy equations,

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \tilde{V}) = 0 \quad \text{and} \quad \frac{\partial p}{\partial t} + \tilde{V} \cdot \nabla p + \gamma p \tilde{V} \cdot \tilde{V} = 0,$$

with the adiabatic index $\gamma = 5/3$ for ideal MHD, are then conveniently used to obtain the perturbed density and pressure, n_1 and p_1, as

$$n_1 + \nabla \cdot (n_0 \tilde{\xi}) = 0 \quad \text{and} \quad p_1 + \tilde{\xi} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \tilde{\xi} = 0,$$ \hfill (3.2)

since $\nabla \cdot \tilde{V}_0 = 0 = \nabla \cdot (n_1 \tilde{V}_0) = \tilde{V}_0 \nabla p_1$. The unperturbed particle and energy conservation equations are satisfied by the unperturbed flow so there is no need to assume an unperturbed adiabatic or polytropic relation between the unperturbed density and pressure. If n_1 and p_1 are combined to eliminate $\nabla \cdot \tilde{\xi}$ the result is the entropy constraint,

$$n_o (p_1 + \tilde{\xi} \cdot \nabla p_0) = \gamma p_0 (n_1 + \tilde{\xi} \cdot \nabla n_o),$$

which differs in form from Balbus and Hawley (1991) who are missing the perturbed pressure term in their equations (2.2h) and (2.3a).

Next, we consider Faraday's law for ideal MHD, $\partial \tilde{B}/\partial t = -c \nabla \times \tilde{E} = \nabla \times (\tilde{V} \times \tilde{B})$. Linearization gives the equation for the perturbed magnetic field \tilde{B}_1 to be

$$\frac{\partial \tilde{B}_1}{\partial t} = \nabla \times [(\partial \tilde{\xi}/\partial t) \times \tilde{B}_0 + \Omega R^2 \nabla \times \tilde{B}_1].$$ \hfill (3.3)

The $\nabla \zeta$ component of \tilde{B}_1 gives the equation for $B_z = R \tilde{B}_1 \cdot \nabla \zeta$ to be

$$\frac{\partial B_z}{\partial t} = R \tilde{B}_0 \cdot \nabla \left(R^{-1} \partial \tilde{\xi} / \partial t \right) + R \tilde{B}_1 \cdot \nabla \Omega.$$ \hfill (3.4)

where $\tilde{\xi} = R \tilde{\xi} \cdot \nabla \zeta$, and we have used $\nabla \cdot \tilde{B}_0 = 0 = \nabla \cdot \tilde{B}_1 = 0 = \nabla \cdot \tilde{V}_0 = 0 = \tilde{V}_0 \cdot \nabla (\tilde{B}_1 \cdot \nabla \zeta)$. For the poloidal components of Faraday's law we use (3.3) to form the equation for $\tilde{B}_1 \cdot \nabla \Omega$, ...
where Q is an arbitrary axisymmetric scalar function so that $\nabla \zeta \cdot \nabla Q = 0$. Taking advantage of axisymmetry, Faraday's law gives the simple result
\[
\tilde{B}_i \cdot \nabla Q = \tilde{B}_0 \cdot \nabla (\tilde{\xi} \cdot \nabla Q) - \nabla \cdot (\tilde{\xi} \tilde{B}_0 \cdot \nabla Q).
\]
Using $Q = \psi_0$, the preceding gives $\tilde{B}_i \cdot \nabla \psi_0 = \tilde{B}_0 \cdot \nabla (\tilde{\xi} \cdot \nabla \psi_0)$. Axisymmetry and $\nabla \cdot \tilde{B}_i = 0$ mean we can write $\tilde{B}_i = RB_\xi \nabla \zeta + \nabla \psi_1 \times \nabla \zeta$, with ψ_1 the perturbed flux function defined so that $\tilde{B}_i \cdot \nabla \psi_0 + \tilde{B}_0 \cdot \nabla \psi_1 = 0$. Consequently, $\psi_1 = -\tilde{\xi} \cdot \nabla \psi_0$ and we may write
\[
\tilde{B}_i = RB_\xi \nabla \zeta + \nabla \psi_1 \times \nabla (\tilde{\xi} \cdot \nabla \psi_0).
\] (3.5)
Then we can form $R^2 \nabla \zeta \times \tilde{B}_i = -\nabla (\tilde{\xi} \cdot \nabla \psi_0)$ and
\[
\partial \tilde{B}_\xi / \partial t = \nabla (\tilde{\xi} \cdot \nabla \Omega + \nabla \beta \nabla \zeta / \partial t).
\] (3.6)

Finally, we turn our attention to the linearization of the momentum conservation equation, $cMn(\partial \tilde{v} / \partial t + \tilde{v} \cdot \nabla \tilde{V} + \nabla \tilde{V}) + cv = \tilde{J} \times \tilde{B}$. To carry out the linearization we use $(\nabla \times \tilde{B}_i) \times \tilde{B}_0 = \tilde{B}_0 \cdot \nabla \psi_0 \nabla \cdot (\tilde{B}_i \times \nabla \zeta) - \nabla \zeta \cdot \nabla \cdot (\tilde{B}_i \times \nabla \psi_0) = \psi_0 \nabla \cdot [\nabla \psi_1 \nabla (\tilde{\xi} \cdot \nabla \psi_0)] + \nabla \zeta \cdot \tilde{B}_0 \cdot \nabla (RB_\xi), \tilde{J}_0 \times \tilde{B}_i = J_0 0 \nabla \zeta \times \nabla \cdot (\nabla \psi_1 \times \nabla (\tilde{\xi} \cdot \nabla \psi_0)) = -\nabla \psi_0 \nabla \cdot (\tilde{\xi} \cdot \nabla \psi_0), \nabla \psi_1 \cdot \nabla \zeta = -\nabla \zeta \cdot \nabla \psi_1 = \nabla \psi_1 \cdot \nabla \zeta = -\nabla \zeta \cdot \nabla \psi_1$, and $\nabla \psi_1 \cdot \nabla \zeta = -\Omega^2 \nabla \psi_0 = \nabla \psi_1 \cdot \nabla \zeta$, as well as axisymmetry. We obtain
\[
\frac{\partial^2 \tilde{\xi}}{\partial t^2} + \Omega R^2 \nabla \zeta \cdot \nabla \frac{\partial \tilde{\xi}}{\partial t} + \frac{\partial \tilde{\xi}}{\partial t} = [\nabla (\Omega R^2) \nabla \zeta - \Omega (R^2 \nabla \zeta + \nabla \psi_1)] - \frac{n}{n_0} \frac{\Omega^2 \nabla \psi_0 - \frac{M_0 G_0}{r^2} \nabla \psi_0}{4 \pi n_0}.
\] (3.7)

Taking a time derivative of the $\nabla \zeta$ component of (3.7) and inserting $\partial \tilde{B}_\xi / \partial t$ yields a form in which only the displacement enters
\[
R \frac{\partial^2 \tilde{\xi}}{\partial t^2} + \nabla (\Omega R^2) \cdot \frac{\partial \tilde{\xi}}{\partial t} = (4 \pi n_0) \frac{\partial}{\partial t} \tilde{B}_0 \cdot \nabla [R^2 \tilde{B}_0 \cdot \nabla (\tilde{\xi} \cdot \nabla \psi_0)] = \nabla \beta \nabla \zeta / \partial t.
\] (3.8)

Using parallel and radial pressure balance allows us to rewrite the $\frac{\partial^2 \tilde{\xi}}{\partial t^2}$ equation and then dot it by \tilde{B}_0 to obtain a second component, namely
\[
\left[\frac{\partial^2 \tilde{\xi}}{\partial t^2} - \frac{\partial \tilde{\xi}}{\partial t} \Omega \nabla \psi_0 + \frac{\nabla \psi_0}{n_0} \frac{\partial \tilde{\xi}}{\partial t} \right] \cdot \tilde{B}_0 = \frac{\nabla (R^2 \nabla \psi_0)}{4 \pi n_0} \tilde{B}_0 \cdot \nabla (\tilde{\xi} \cdot \nabla \psi_0),
\] (3.9)
where using that the unperturbed current density is azimuthal we find $\nabla \psi_0 \cdot \nabla \psi_0 = \nabla \psi_0 \cdot \nabla \tilde{B}_0$, giving $\nabla \zeta \cdot \nabla \tilde{U} = \nabla \tilde{U} \cdot \nabla \tilde{B}_0 \cdot \nabla \tilde{V} + \nabla \tilde{U} \cdot \nabla \tilde{B}_0 \cdot \nabla \tilde{V} = \tilde{U} \cdot \nabla \nabla \tilde{U} \cdot \tilde{B}_0 \cdot \nabla \times \nabla \tilde{V} = -R \tilde{U} \cdot \nabla \zeta \cdot \tilde{B}_0$ with \tilde{U} an arbitrary vector.

For the final component we use $0 = \nabla \zeta \times (\nabla \times \nabla \psi_0) = \nabla \psi_0 \cdot \nabla \tilde{V} - \nabla \psi_0 \cdot \nabla \nabla \tilde{V}$ to form the $\nabla \psi_0$ component of the momentum equation by noting that $\nabla \psi_0 \cdot \nabla \psi_0 = R^2 \nabla \psi_0 \cdot \nabla \psi_0 \cdot \nabla \psi_0$. The result is
\[
\left[\frac{\partial^2 \tilde{\xi}}{\partial t^2} - \frac{\partial \tilde{\xi}}{\partial t} \Omega \nabla \psi_0 + \frac{\nabla \psi_0}{n_0} \frac{\partial \tilde{\xi}}{\partial t} \right] \cdot \nabla \psi_0 =
\]
4. Cylindrically symmetric magnetic field in the absence of gravity (G = 0)

To illustrate the subtleties of retaining compressibility and unperturbed radial variation in a self-consistent equilibrium it is informative to first consider the simplest limit of rotation in an axial magnetic field without gravity (G = 0) or any unperturbed axial variation. In this limit the equilibrium magnetic field \(\mathbf{B}_0 \) is axial and of the form

\[
\mathbf{B}_0 = B_0(R)\mathbf{V}_Z,
\]

with \(\psi_0 = \psi_0(R) \) and \(R\mathbf{B}_0 = d\psi_0/dR \). In this cylindrical geometry limit \(\mathbf{J}_0 \times \mathbf{B}_0 = J_0 B_0 V_R \) so equilibrium pressure balance has only the \(VR \) component

\[
c^{-1}J_0 B_0 = \frac{\partial p_o}{\partial R} - Mn_0 R \Omega^2 = -(8\pi)^{-1} \frac{\partial B_0^2}{\partial R},
\]

and \(T_0, p_0 \) and \(n_0 \) depend only on \(R \) since the equilibrium has no axial variation.

Defining the Alfven speed by \(v_A = B_0^2/4\pi M_n_0 \), the equation for \(\partial^3 \xi_\zeta/\partial t^3 \) becomes

\[
\frac{\partial^3 \xi_\zeta}{\partial t^3} + \left[R^{-1}d(\Omega R^2)/dR \right] \frac{\partial^2 \xi_\zeta}{\partial t^2} = v_A^2 \left(\frac{\partial^2}{\partial z^2} \right) \left[\xi_\zeta R (d\Omega/dR) + \partial \xi_\zeta/\partial t \right],
\]

where we now write the displacement as \(\xi = \xi_R VR + \xi_z V_z + \xi_\zeta R V_\zeta \). We may use \(\Omega = \Omega(R) \) because \(\Omega = \Omega(\psi_0) \).

To get the remaining components we use the parallel or \(Q = z \) form of (3.10) to find the \(\xi_z \) equation and then insert \(p_1 \) and use unperturbed pressure balance to find

\[
\frac{\partial^2 \xi_z}{\partial t^2} = \left[R\Omega^2 \frac{\partial \xi_R}{\partial z} + c_s^2 \frac{\partial}{\partial z} \left(\nabla \cdot \xi \right) \right],
\]

where \(c_s^2 = \gamma p_o/Mn_0, \beta = 8\pi p_0/B_0^2 \), and \(\gamma\beta = 2c_s^2/v_A^2 \). The last equation for \(\xi_R \) follows by using \(Q = R \) in (3.10) and then substituting in \(n_1 \) and \(p_1 \) from (3.2) to obtain

\[
\frac{\partial^2 \xi_R}{\partial t^2} - 2 \Omega \frac{\partial \xi_R}{\partial t} + R \Omega^2 \frac{\partial \xi_R}{\partial z} - R \xi_R \frac{\partial \Omega^2}{\partial R} = \left[- B_0^2 \frac{\partial}{\partial R} R \partial R \right] \left[B_0^2 \frac{\partial}{\partial R} \left(R \xi_R \right) \right] + \frac{v_A^2}{B_0} \frac{\partial^2 \xi_R}{\partial z^2} + \frac{\gamma}{n_0} \frac{\partial}{\partial R} \left(p_0 \nabla \cdot \xi \right),
\]

where we eliminate \(\partial p_0/\partial R \) by using unperturbed pressure balance.

The preceding two equations (4.4) and (4.5), along with (4.3) for \(\xi_\zeta \) are the general set of equations for a cylindrically symmetric magnetic field configuration with no axial variation in the absence of gravity. The final forms of the equations for \(\xi_R \) and
\[\xi_z \text{ allow us to be sure that we are carefully treating all terms in } n_i \text{ and } p_i. \]

To simplify the description we Fourier transform in \(z \) and seek solutions harmonic in time by assuming

\[\tilde{\xi} \propto e^{-i\omega t + ik_z z}. \]

We obtain the three equations for the three components of the displacement

\[i\omega (\omega^2 - k_z^2 v_A^2) \tilde{\xi}_z = \tilde{\xi}_R \left\{ \omega^2 R^{-1} d(\Omega R^2)/dR - k_z^2 v_A^2 R d\Omega/dR \right\}, \]

\[(\omega^2 - k_z^2 c_z^2) \tilde{\xi}_z = -i k_z [R \Omega^2 \tilde{\xi}_R + \frac{c_z^2}{R} \frac{\partial}{\partial R} (R \tilde{\xi}_R)], \]

and

\[(\omega^2 - k_z^2 v_A^2 + R \frac{\partial \Omega^2}{\partial R}) \tilde{\xi}_R + \frac{1}{n_0} \frac{\partial}{\partial R} \left[n_0 c_z^2 \frac{\partial (R \tilde{\xi}_R)}{\partial R} \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[B_0 \frac{\partial}{\partial R} (R \tilde{\xi}_R) \right] = \]

\[2i\omega \Omega \tilde{\xi}_z + ik_z [R \Omega^2 \tilde{\xi}_R - \frac{1}{n_0} \frac{\partial}{\partial R} (n_0 c_z^2 \tilde{\xi}_z)]. \]

First, eliminating \(\xi_z \) by substituting (4.9) into (4.10) gives

\[(\omega^2 - k_z^2 v_A^2 + R \frac{\partial \Omega^2}{\partial R}) \tilde{\xi}_R + \frac{1}{n_0} \frac{\partial}{\partial R} \left[n_0 c_z^2 \frac{\partial (R \tilde{\xi}_R)}{\partial R} \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[B_0 \frac{\partial}{\partial R} (R \tilde{\xi}_R) \right] = \]

\[2i\omega \Omega \tilde{\xi}_z + k_z \frac{n_0 c_z^2}{n_0 c_z^2} (R \Omega^2 - c_z^2 \frac{\partial}{\partial R}) \left\{ -\frac{n_0 c_z^2}{n_0 c_z^2} [R \Omega^2 \tilde{\xi}_R + \frac{c_z^2}{R} \frac{\partial}{\partial R} (R \tilde{\xi}_R)] \right\}. \]

Then eliminating \(\xi_z \) from the preceding by using (4.8) gives the full radial differential equation for \(\tilde{\xi}_R \) to be

\[\left[\omega^2 - k_z^2 \frac{v_A^2}{n_0} \frac{\partial}{\partial R} \frac{\partial}{\partial R} - \frac{4\omega^4 \Omega^2}{(\omega^2 - k_z^2 \frac{v_A^2}{n_0})^2} \right] \tilde{\xi}_R + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[B_0 \frac{\partial}{\partial R} (R \tilde{\xi}_R) \right] = \]

\[\frac{k_z^2 R^2 \Omega^4 \frac{\partial^2}{\partial R^2} \Omega^2 \tilde{\xi}_R}{(\omega^2 - k_z^2 \frac{v_A^2}{n_0})} - \frac{\omega^2 R \Omega^4 \frac{\partial}{\partial R} \frac{\partial}{\partial R} \frac{\partial}{\partial R} (R \tilde{\xi}_R) \partial R}{(\omega^2 - k_z^2 \frac{v_A^2}{n_0})} \]

(4.11)

where we have combined the \(n_0 c_z^2 \frac{\partial}{\partial R} (R \tilde{\xi}_R) \partial R \) terms to exactly cancel some first derivatives of \(R \tilde{\xi}_R \) terms. Equation (4.11) is the generalization of the radial differential form of Velikhov (1959) to retain compressibility. It allows \(k_z^2 c_z^2 \sim \Omega^2 \sim k_z^2 v_A^2 \gg \omega^2 \), \(k_z^2 R^2 \sim 1 \), and \(\partial/\partial R \sim 1/R \).

To perform a WKB analysis we must assume

\[R \frac{\partial^2}{\partial R^2} (\tilde{\xi}_R) \partial R \gg R n_0 \frac{\partial}{\partial R} - R p_0 \frac{\partial}{\partial R} - R \Omega^{-1} \frac{\partial \Omega}{\partial R} \sim 1, \]

so that \(k_z^2 R^2 \gg 1 \), where \(\xi_R \propto e^{i/\Omega \Delta k_R} \). To allow \(k_z^2 R^2 \gg 1 \) and correctly treat marginal stability, we order \(k_z^2 c_z^2 \sim R^2 \Omega^4 / c_z^2 \sim \Omega^2 \sim k_z^2 v_A^2 \gg k_z^2 v_A^2 \gg \omega^2 \) and thereby assume \(\beta \gg 1 \).

The geometric optics dispersion relation allowing \(k_z^2 > k_z^2 \) is then
\[k^2 v^2_{\lambda} + \frac{4 \omega^2 \Omega^2}{(\omega^2 - k^2_{\lambda})} - \frac{k^2_R R^2 \Omega^4 + \omega^2 k^2_R c^2_s}{k^2_s c^2_s} + \frac{R \partial}{n_0 \partial R} (n_0 \Omega^2) = 0, \quad (4.12) \]

where \(k^2 = k^2_{\lambda} + k^2_R \). All terms in (4.12) are allowed to be the same order. Notice that at marginality \((\omega^2 \rightarrow 0)\) equation (4.12) recovers a radial density gradient term as well as the usual rotation frequency gradient

\[\frac{k^2 v^2_{\lambda}}{\Omega^2} < \frac{R^2 \Omega^2}{c^2_s} - \frac{R \partial}{n_0 \Omega^2 \partial R}, \quad (4.13) \]

Marginal stability is most easily determined graphically from (4.12) by examining the behavior near \(\omega^2 = 0 \). The instability window for this new result is larger than if we had assumed strict incompressibility \((c^2_s \rightarrow \infty)\). Also, (4.13) does not assume constant \(n_0 \) as in Velikhov (1959) or \(\Omega^2 \propto R^{-3} \). In the hydrodynamic limit \((v^2_A = 0)\), WKB still requires \(k_0 R \gg 1 \), but in (4.11) we can allow \(c^2_s / R^2 \sim k^2_{\lambda} c^2_s \sim \Omega^2 \sim R^2 \Omega^4 / c^2_s \geq \omega^2 \) to find \(\omega^2 k^2_{\lambda} = R^3 n_0 \partial / \partial R - R^2 \Omega^4 / c^2_s \) when \(\omega^2 \ll k^2_R c^2_s \). For a hydrodynamic equilibrium at constant \(\Omega \), \(T_0 \), and \(n_0 \), stability is assured. In fact, for \(\Omega = \Omega(R) \) and constant \(T_0 \) and \(n_0 \), an inviscid Couette flow instability requires

\[- R \Omega^2 \partial \Omega^2 / \partial R > 4 + (\gamma - 1) M \Omega^2 \gamma^2 / T_0, \]

since in the fluid limit \(c^2_s \rightarrow \gamma T_0 / M \) and \(\gamma \rightarrow 5 / 3 \).

The preceding results are consistent with the following integral constraint obtained by multiplying (4.11) by \(n_0 R \xi^*_R \):

\[\int_0^\infty dR n_0 |\xi^*_R|^2 \left[(\omega^2 - k^2_{\lambda})^2 - \frac{4 \omega^2 \Omega^2}{n_0} \frac{\partial}{\partial R} \frac{k^2_R \Omega^4}{c^2_s} - \frac{k^2_R}{n_0} \frac{\partial}{\partial R} \left(\frac{n_0 \Omega^2 \partial}{c^2_s} \right) \right] = \int_0^\infty dR \frac{n_0}{R} \left[v^2_{\lambda} + \frac{\omega^2 c^2_s}{(\omega^2 - k^2_{\lambda} c^2_s)} \right] \left[\frac{\partial}{\partial R} (R \xi^*_R) \right]^2, \]

where \(\xi^*_R \) is the complex conjugate of \(\xi_R \) and we assume the total derivative terms vanish at \(R = 0 \) and infinity. At marginality this gives the threshold constraint

\[\int_0^\infty dR n_0 |\xi^*_R|^2 \left[k^2_{\lambda} v^2_{\lambda} + \frac{R \partial (n_0 \Omega^2)}{n_0} - \frac{R^2 \Omega^4}{c^2_s} \right] = \frac{v^2_{\lambda}}{R \partial R} \left(R \xi^*_R \right)^2 = 0. \]

These integral constraints are consistent with the WKB dispersion relation and the stability threshold condition and remain valid even when geometric optics fails for \(\beta < 1 \) where the full differential equation (4.11) must be solved. At marginality (4.11) becomes

\[\left[\frac{R^2 \Omega^4}{c^2_s} - \frac{R \partial (n_0 \Omega^2)}{n_0} - k^2_{\lambda} v^2_{\lambda} \right] \xi_R + \frac{v^2_{\lambda}}{R \partial R} \left(R \xi_R \right) = 0, \]

which is consistent with our WKB treatment.

The Velikhov (1959) condition for marginality \((\omega \rightarrow 0)\) is obtained from

\[i \omega \xi^*_R = \xi_R R d\Omega / dR, \quad (4.14) \]
\[k_c c_s^2 \xi_z = i[R \Omega^2 \xi_z + \frac{c_s^2}{R} \frac{\partial}{\partial R} (R \xi_z)] , \]
(4.15)

and

\[
R \frac{\partial \Omega^2}{\partial R} \frac{\xi_z}{R} + \frac{1}{n_0} \frac{\partial}{\partial R} \left[\frac{n_0 c_s^2}{R} \frac{\partial (R \xi_z)}{\partial R} \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[\frac{B_0}{R} \frac{\partial}{\partial R} (R \xi_z) \right] = \\
2i \omega \Omega \xi_z + i k_x [R \Omega^2 c_s^2 \xi_z - \frac{1}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z)] . \]
(4.16)

Inserting (4.14) into (4.16) leaves (4.15) and the radial momentum balance equation

\[
\frac{1}{n_0} \frac{\partial}{\partial R} \left[\frac{n_0 c_s^2}{R} \frac{\partial (R \xi_z)}{\partial R} \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[\frac{B_0}{R} \frac{\partial}{\partial R} (R \xi_z) \right] = i k_x [R \Omega^2 c_s^2 \xi_z - \frac{1}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z)] . \]
(4.17)

Then eliminating \(\xi_z \) by inserting (4.15) into (4.17) yields (4.13). To recover the incompressible limit we see that a careful treatment of the \(c_s^2 \to \infty \) terms is required.

4.1. Self-consistent equilibrium for an axial magnetic field without gravity

For the exact self-similar equilibrium solution of Catto and Krasheninnikov (2015)

\[\psi_0 = C H(\mu) r^\alpha , \]
(4.18)

where \(\mu = \cos \theta \), \(C \) is a constant, and \(\alpha \) is an eigenvalue determined by solving the nonlinear Grad-Shafranov equation for \(H \). The density, temperature, and rotation are of the form \(n_0 \propto R^{-2 \alpha - 3} \), \(T_b \propto R^{-1} \), and \(\Omega \propto R^{-3/2} \), and the solution of the Grad-Shafranov equation requires \(\alpha \) to satisfy

\[\alpha + 2 = -\gamma \Omega^2 R^2 / (2 c_s^2 + \gamma v_A^2) . \]
(4.19)

For \(\alpha + 2 < 0 \) the axial magnetic field of this equilibrium model increases away from the axis of symmetry for instability. Using the preceding gives

\[- \frac{R}{n_0 \Omega^2} \frac{\partial (n_0 \Omega^2)}{\partial R} = 2(\alpha + 3) = 2 - \frac{2 \gamma \Omega^2 R^2}{2 c_s^2 + \gamma v_A^2} . \]

Then for \(\beta >> 1 \) our condition for instability for this self consistent equilibrium becomes

\[1 > \frac{\Omega^2 R^2}{3 c_s^2} + \frac{k^2 v_A^2}{2 \Omega^2} = \frac{2 \Omega^2 R^2}{3 c_s^2} + \frac{k^2 v_A^2}{2 \Omega^2} , \]
(4.20)

where we must keep \(k_s^2 R^2 >> 1 \) to satisfy our geometric optics treatment in the radial direction. Therefore, compressibility stabilizes the MRI for all wavelengths when \(\gamma \beta >> 2 \Omega^2 R^2 / 3 v_A^2 \) or all wavelengths when \(\gamma \beta >> 2 \Omega^2 R^2 / 3 v_A^2 \) or all wavelengths when \(\gamma \beta >> 2 \Omega^2 R^2 / 3 v_A^2 \) or all wavelengths when \(\gamma \beta >> 2 \Omega^2 R^2 / 3 v_A^2 \).

Our incompressible condition for instability \(2 \Omega^2 >> k_s^2 v_A^2 / 2 \Omega^2 \) is consistent with the findings of Velikhov (1959) who worked in the \(\beta >> 1 \) limit by assuming \(\nabla \xi^z = 0 \) so that
$c_s^2 \to \infty$. In the absence of an azimuthal unperturbed magnetic field he considered the full radial eigenvalue problem. However, he only mentions in passing "the flow near a cylinder rotating in an unbounded medium" as his work focused on plasma being driven unstable between two concentric rotating cylinders. In the unbounded limit Velikhov's quasi-classical calculation for a radial mode number of 10 at the end of his section 2 estimated magnetic fields $B_0 < (4\pi M n_0)^{1/2} \Omega R/18$ as being unstable - a condition in rough agreement with our result of $2\Omega^2 > k_r^2 v_A^2$ for $k_r R = 10$ when $3c_s^2 \gg \Omega^2 R^2$.

5. Axial magnetic field with gravity and strict Keplerian rotation

In this strict Keplerian limit in which the equilibrium magnetic field \tilde{B}_0 is axial and any unperturbed axial variation caused by the imbalance of the centrifugal and gravitational forces ignored, the calculation of the previous section can be repeated by keeping gravity in the radial and axial pressure balance conditions.

We first obtain the equations for general Keplerian rotation by letting $\Omega^2 \to \Omega^2 - M_0 G_0 r^{-3}$ in (4.9) and (4.10) except in the $2i\omega \Omega \xi$ term in (4.10). No changes are needed in (4.8). The equations for the components of the displacement then become

$$i\omega(\omega^2 - k_z^2 v_A^2) \xi_z = \left[\frac{n_0 c_s^2}{R} \frac{\partial}{\partial R} (R \xi_z)\right] + 2i\omega \Omega \xi_z - 2i\omega \Omega \xi_z - \frac{k_z}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z),$$

$$\xi_z = \frac{n_0 c_s^2}{R} \frac{\partial}{\partial R} (R \xi_z) - 2i\omega \Omega \xi_z - \frac{k_z}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z)$$

and

$$\xi_z = \frac{n_0 c_s^2}{R} \frac{\partial}{\partial R} (R \xi_z) - 2i\omega \Omega \xi_z - \frac{k_z}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z)$$

Next we assume strict Keplerian rotation by using $\Omega^2 = M_0 G_0 r^{-3}$ in (5.2) and (5.3). Again, eliminating ξ_z first gives

$$\frac{n_0 c_s^2}{R} \frac{\partial}{\partial R} (R \xi_z) - 2i\omega \Omega \xi_z - \frac{k_z}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z)$$

Then, eliminating ξ_z gives the radial eigenvalue equation

$$[\omega^2 - k_z^2 v_A^2 - \frac{4\omega^2 \Omega^2}{(\omega^2 - k_z^2 v_A^2)} - R \frac{\partial}{\partial R} \Omega^2 \xi_z + \frac{\omega^2}{n_0} \frac{\partial}{\partial R} \left[\frac{n_0 c_s^2}{R} \frac{\partial (R \xi_z)}{\partial R}\right] + \frac{n_0 c_s^2}{R} \frac{\partial (R \xi_z)}{\partial R} \right] + \frac{\omega^2}{B_0} \frac{\partial}{\partial R} \left[\frac{n_0 c_s^2}{R} \frac{\partial (R \xi_z)}{\partial R}\right] = 0.$$
Solving by geometric optics \((k^2_R R^2 >> 1)\), the dispersion relation that results is

\[
k^2 v^2 + \frac{R \partial \Omega^2}{\partial R} + \frac{4 \omega^2 \Omega^2}{(\omega^2 - k^2 v^2)} - \frac{\omega^3 k^2_R}{k^2_z} = 0, \tag{5.6}
\]

where \(k^2 = k^2_z + k^2_R\). We allow \(k^2_c^2 c_s^2 \sim R^2 \Omega^4 / c_s^2 \sim \Omega^2 \sim k^2 v^2 A^0_\nu \geq k^2_c^2 v^2 A^0_\nu \geq \omega^2\) and \(k^2 R^2 \geq 1\), and note that \(\beta \gg 1\). Graphically, (5.6) gives magnetorotational (or equivalently, magneto-gravitational) instability to be the standard result of Balbus and Hawley (1991),

\[
\frac{k^2 v^2 A^0_\nu}{\Omega^2} < - \frac{R}{\partial \Omega^2 / \partial R}, \tag{5.7}
\]

where for Keplerian rotation \(-R \Omega^2 / \partial R = 3\). The preceding is in agreement with Balbus and Hawley (1991) provided their small \(\partial p_c / \partial R\) and \(\partial p_c / \partial z\) terms are ignored. In Hawley et al. (1995) the entropy equation is corrected to be consistent with energy conservation [recall our entropy equation after (3.2)]. Condition (5.7) gives the MRI as \(B_0 \rightarrow 0\). Stability may be possible for strong magnetic fields since \(k^2_R R^2 \leq 1\) gives \(3 \Omega^2 R^2 / v^2 \leq 1\), implying \(\beta \leq 2 c_s^2 / 3 \gamma \Omega^2 R^2 \sim 1\) for our \(c_s^2 \sim \Omega^2 R^2\) ordering. Interestingly, in the hydrodynamic limit \((v^2_A = 0)\) if \(\omega^2 < k^2_c^2 c_s^2\), (5.4) reduces to \(\omega^2 k^2 z^2 = R^3 \partial (\Omega^2 R^4) / \partial R\).

This strict Keplerian case is the one that the insightful physical interpretation by Balbus (2006) of masses attached by springs is most appropriate. The bare bones strict Keplerian WKB treatment reduces (5.1) - (5.3) to

\[
\begin{aligned}
i \omega (\omega^2 - k^2_c^2 v^2_A) &\xi_c = [(\omega^2 - k^2_c^2 v^2_A) R \partial \Omega / \partial R + 2 \omega^2 \Omega] \xi_c, \tag{5.8} \\
(\omega^2 - k^2_c^2 c_s^2) &\xi_c = -\frac{ik_c^2 c_s^2}{R} \partial (R \xi_c / \partial R), \tag{5.9}
\end{aligned}
\]

and

\[
\frac{1}{n_0} \frac{\partial}{\partial R} \left[n_0 c_s^2 \frac{\partial (R \xi_c)}{\partial R} \right] + \frac{v^2_A}{B_0} \frac{\partial}{\partial R} \left[\frac{B_0}{R} \frac{\partial}{\partial R} (R \xi_c) \right] = 2 i \omega \Omega \xi_c \frac{\partial}{\partial R} \left[n_0 c_s^2 \xi_c \right], \tag{5.10}
\]

from which we obtain

\[
\begin{aligned}
\frac{v^2_A}{B_0} \frac{\partial}{\partial R} \left[\frac{B_0}{R} \frac{\partial}{\partial R} (R \xi_c) \right] &= [R \frac{\partial \Omega^2}{\partial R} + \frac{4 \omega^2 \Omega^2}{(\omega^2 - k^2 v^2)}] \xi_c - \frac{\omega^2}{n_0} \frac{\partial}{\partial R} \left[n_0 c_s^2 \frac{\partial}{\partial R} (R \xi_c) \right],
\end{aligned}
\]

where we can now use \(k^2_c^2 c_s^2 > \omega^2\) to further simplify the last term to obtain (5.6). If we simply want to get the MRI threshold \((\omega \rightarrow 0)\) we may assume incompressibility in (5.9) to remove the \(c_s^2\) terms in (5.10) to obtain

\[
i \omega \xi_c = \xi_c R \partial \Omega / \partial R \tag{5.11}
\]

and

\[
\frac{v^2_A}{B_0} \frac{\partial}{\partial R} \left[\frac{B_0}{R} \frac{\partial}{\partial R} (R \xi_c) \right] = 2 i \omega \Omega \xi_c, \tag{5.12}
\]

13
The only non-Alfvénic term is from the inertial term $2i\omega\Omega\xi_\zeta$ in (5.12) since (5.11) is from the right side of (3.8). The simple toroidal momentum conservation equation of (5.11) is recovered from the vanishing of the toroidal component of the perturbed magnetic field for a frozen in flow, (3.4), or equivalently, the vanishing of the perturbed radial current density, $\nabla \cdot (\vec{B}_i \times \nabla \psi_0) = 0$. Equation (5.12) is radial momentum balance between the inertial term and $\vec{J} \times \vec{B}$ force to lowest order:

$$M_n(\vec{V}_i \cdot \nabla \vec{V}_0 + \vec{V}_0 \cdot \nabla \vec{V}_i) \cdot \nabla \psi_0 = [c^{-1}\vec{J}_0 \times \vec{B}_i + (4\pi)^{-1}(\nabla \times \vec{B}_i) \times \vec{B}_0] \cdot \nabla \psi_0.$$

Equations (5.11) and (5.12) are the ones for which the Balbus (2006) physical interpretation is valid. For a marginally unstable mode $\omega \rightarrow i\text{Im}\omega$ with $\text{Im}\omega > 0$ we see from (5.11) that $\xi_\zeta \rightarrow 3\Omega\xi_\zeta / 2i\text{Im}\omega$, where Im denotes the imaginary part. Using

$$\frac{\partial^2 \xi_\zeta}{\partial R^2} \rightarrow -k_R^2\xi_\zeta$$

in (5.12) gives $\xi_\zeta \rightarrow 2\Omega\xi_\zeta \text{Im}\omega / k_R^2v_A^2$, so that both displacements are proportional to $\Omega \propto R^{-3/2}$. Therefore, two incremental axisymmetric toroidal mass rings stacked one above the other with oppositely directed initial radial displacements rotate toroidally in opposite directions and continue to separate radially due to the MRI. Noticing $\xi_\zeta \text{Im}\omega \rightarrow -RV\xi_\zeta \cdot \vec{V}_i$, the upper mass ring with an initial radial perturbation $\xi_R > 0$ slows ($\xi_\zeta > 0$) when moved outward, thereby decreasing its angular rotation frequency ($\Omega \propto R^{-3/2}$) and increasing its angular momentum ($\Omega R^2 \propto R^{1/2}$). Similarly, the initial $\xi_R < 0$ radial perturbation of the lower mass ring increases its angular rotation frequency ($\xi_\zeta < 0$) as it moves inward, causing its angular momentum to drop. In the unstable limit, the tension of the frozen in magnetic field lines resists any decrease (or change) in angular rotation frequency of the upper ring by a torque that increases its angular momentum, thereby moving the ring to still larger R and further lowering lowering its angular frequency. As a result, the upper mass ring continues to move to a larger radius to try to recover its lost angular frequency, while the lower mass ring moves to smaller radii in an attempt to gain angular frequency.

5.1. Self-consistent strict Keplerian equilibrium for an axial magnetic field

In the strict Keplerian limit, Catto et al. (2015) obtain $\beta > 1$ analytic and numerical results with the equatorial plane plasma density increasing linearly with R for a thin equatorial plane disk when $M\Omega^2 R^2 / 4T = M_o G_o M / 4TR >> 1$. In this case the disk width Δ is given by $\Delta / R = 2T^{1/2} / M^{1/2} \Omega R << 1$. Perturbation wavelengths in the z direction are limited to the disk width and therefore must satisfy $k_c \Delta > 2\pi$, while our eikonal treatment
requires \(k_x^2 R^2 \gg 1 \). Assuming \(k_x^2 > k_z^2 \) in the condition for instability requires
\[
3\gamma \beta \Omega^2 R^2/2c_s^2 > k_x^2 R^2 > k_z^2 R^2 > 4\pi^2 R^2/\Delta^2 = 2\pi^2 \Omega^2 R^2/c_s^2
\]
or
\[
\beta > 4\pi^2/3 .
\]
Therefore, the high \(\beta \) ordering is appropriate with large \(\beta \) needed for instability as might be expected. Moreover, thin disk equilibria exist for the self-similar equilibria of Catto et al. (2015) in the strict Keplerian limit when \(H \approx (1-\mu^2)^{-\alpha/3} \) inside the thin disk, transitions to \(H \approx (1-\mu^2)^{-\alpha/2} \) outside the disk and \(\alpha = -2 \).

The preceding treatment might be viewed as somewhat unsatisfactory since we seem to have assumed \(\Omega^2 = M_0 G_0 r^{-3} \) for all \(z \). To counter the imbalance between the centrifugal and gravitational forces the density must depend on \(z \) and satisfy parallel pressure balance. Consequently, in the next section we justify the preceding limit by extending the analysis of (5.1) - (5.3) to a fully self-consistent configuration allowing \(z \) variation without assuming strict Keplerian rotation.

6. Axial magnetic field with gravity for general rotation

When the equilibrium magnetic field is axial as in (4.1) and unperturbed axial variation of the plasma density retained, the calculation of the previous sections can be repeated for general Keplerian motion by using a geometric optics approach in the \(z \) direction that seeks solutions of the form \(\xi \propto e^{-i\omega t + ik_z z} \). The equations obtained are identical to (5.1) - (5.3) which retain gravity in the radial and axial pressure balance conditions.

Eliminating \(\xi_z \) by inserting (5.2) into (5.3) gives
\[
[\omega^2 - k_x^2 \nu_A^2 + R \frac{\partial}{\partial R} \left(\Omega^2 - \frac{M_0 G_0}{r^3} \right)] \xi_R + \frac{1}{n_0} \frac{\partial}{\partial R} \left[n_0 c_s^2 \frac{\partial}{\partial R} (R^2 \xi_R) \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[\frac{B_x^2}{R} \frac{\partial}{\partial R} (R^2 \xi_R) \right] =
\]
\[
2i\omega \Omega \xi_x + \frac{1}{n_0} \left(\Omega^2 - \frac{M_0 G_0}{r^3} \right) \frac{\partial}{\partial R} \left[n_0 k_x^2 c_s^2 \left(\frac{R}{\omega^2 - k_x^2 c_s^2} \right) \xi_x + \frac{c_s^2}{R} \frac{\partial}{\partial R} (R^2 \xi_R) \right].
\]

Then using (5.1) to eliminate \(\xi_z \) from (6.1) gives the radial differential equation
\[
[\omega^2 - k_x^2 \nu_A^2 - R \frac{\partial}{\partial R} \left(\frac{M_0 G_0}{r^3} \right)] \xi_R + \frac{1}{n_0} \frac{\partial}{\partial R} \left[n_0 c_s^2 \frac{\partial}{\partial R} (R^2 \xi_R) \right] + \frac{v_A^2}{B_0^2} \frac{\partial}{\partial R} \left[\frac{B_x^2}{R} \frac{\partial}{\partial R} (R^2 \xi_R) \right] =
\]
\[
\frac{4\omega^2 \Omega^2}{(\omega^2 - k_x^2 \nu_A^2)} \xi_R + \frac{1}{n_0 c_s^2} \left(\Omega^2 - \frac{M_0 G_0}{r^3} \right) \frac{\partial}{\partial R} \left[n_0 k_x^2 c_s^2 \left(\frac{R}{\omega^2 - k_x^2 c_s^2} \right) \xi_x + \frac{c_s^2}{R} \frac{\partial}{\partial R} (R^2 \xi_R) \right].
\]

Equation (6.2) is the radial differential equation for general rotation in an axial magnetic field for the MRI instability when an axial eikonal treatment is employed.

We seek a WKB, geometric optics, or eikonal radial solution by using \(\xi_R \propto e^{i \omega t + k_x \xi_x} \).
and \(\partial \xi / \partial R = \text{i} k R \xi \), with
\[
k R R \sim R^{-1} \partial \xi / \partial R \gg Rn_0^{-1} \partial n_0 / \partial R \sim R \Omega^2 \partial \Omega / \partial R \sim 1,
\]
by allowing \(k^2 \xi^2 \sim R^2 \Omega^4 / c_s^2 \sim \Omega^2 \sim M_0 G_0 r^{-3} \sim k^2 \nu^2 > k^2 \nu^2 > \nu^2 \), \(k^2 R^2 \geq 1 \) and \(\beta \gg 1 \).

From (6.2) we obtain the dispersion relation
\[
k^2 \nu^2 + \frac{R}{\partial R} \left(\frac{M_0 G_0}{r^3} \right) + \frac{4 \Omega^2}{(\omega^2 - k^2 \nu^2)} - \frac{\omega^2 k^2}{k^2} - \frac{R^2 (\Omega^2 - M_0 G_0 r^{-3})^2}{c_s^2} + \frac{R}{n_0} \frac{\partial}{\partial R} \left[n_0 (\Omega^2 - M_0 G_0 r^{-3}) \right] = 0,
\]
(6.3)

where \(k^2 = k^2 + k^2 R \). Graphically, the behavior near \(\omega^2 = 0 \) gives gravitational magnetorotational instability when
\[
k^2 \nu^2 + \frac{R}{\partial R} \frac{\partial \Omega^2}{\partial R} < \frac{R^2 (M_0 G_0 r^{-3} - \Omega^2)^2}{c_s^2} + \frac{M_0 G_0 r^{-3} - \Omega^2}{n_0} \frac{\partial n_0}{\partial R}.
\]
(6.4)

Clearly, the preceding reduces to the Velikhov (1959) result (4.13) in the absence of gravity and the Balbus and Hawley (1991) result (5.7) when \(\Omega^2 = M_0 G_0 r^{-3} \). More importantly, it is clear that unless the motion is strictly Keplerian, compressibility and density gradient effects will impact the stability threshold.

For a hydrodynamic equilibrium (\(\nu^2 = 0 \)), equation (6.2) yields the instability condition
\[
\omega^2 k^2 = R^{-3} \partial (\Omega^2 R^2) / \partial R - (\Omega^2 - M_0 G_0 r^{-3}) n_0^{-1} \partial n_0 / \partial R - R^2 (\Omega^2 - M_0 G_0 r^{-3})^2 / c_s^2.
\]

We can interpret (6.4) by first considering radial force balance for two adjacent, axisymmetric, incompressible plasma rings \(j = 1, 2 \) near the equatorial plane with radius \(R_j \), plasma mass density \(M_{n_j} = \rho_j \), rotation frequency \(\Omega_j \), and pressure \(p_j \):
\[
\partial p_j / \partial R = \rho_j (\Omega_j^2 R_j - M_0 G_0 / R_j^3).
\]

If the first ring is displaced outward to the location of the second ring \((R_1 \rightarrow R_2 > R_1 \) and \(\rho_1 \rightarrow \rho_2 \)), the frozen in magnetic field lines moves with it. Therefore, the ring continues to rotate at the original angular frequency \(\Omega_1 \) of these frozen in field lines. Consequently, the resulting torques due to field line bending act on the first ring to keep its angular frequency fixed while its fluid element is moved \((\Omega_1 \rightarrow \Omega_1) \), as pointed out by Velikhov (1959) and Balbus and Hawley (1991). After being displaced the first ring is acted on by the pressure difference across its new location \(\partial p_2 / \partial R \). However, force balance is no longer satisfied as a restoring force \(\Delta F \) arises due to its movement:
\[
\Delta F + \partial p_2 / \partial R = \rho_1 (\Omega_1^2 R_2 - M_0 G_0 / R_2^3).
\]

Subtracting force balance for the initial second ring from the preceding expression gives
\[\Delta F = \rho_1(\Omega_1^2 R_2 - M_0 G_0 / R_1^2) - \rho_2(\Omega_2^2 R_2 - M_0 G_0 / R_2^2) \]
\[= -[\rho R \frac{\partial \Omega^2}{\partial R} + \frac{\partial \rho}{\partial R}(\Omega^2 R - M_0 G_0 / R^2)](R_2 - R_1). \]

If \(\Delta F < 0 \), then the new plasma pressure difference across the displaced ring returns it to its original location. If instead, \(\Delta F > 0 \) then the plasma pressure across the ring is too small to prevent the displaced ring from continuing to move outward. Therefore, in agreement with (6.4) the incompressible instability condition is
\[nR \frac{\partial \Omega^2}{\partial R} + \frac{\partial n}{\partial R}(\Omega^2 R - M_0 G_0 / R^2) < 0. \]

To get the marginal stability condition in general rotation case we need only combine the following \(\omega \to 0 \) versions of (5.1) - (5.3):
\[i \omega \xi_z = \xi_R R d \Omega / d R, \]
\[i k_z \xi_z = -\frac{1}{R} \frac{\partial}{\partial R} (R \xi_R) = (\Omega^2 - M_0 G_0 r^{-3}) \frac{R \xi_R}{c_s^2}, \]
and
\[\frac{1}{n_0} \frac{\partial}{\partial R} \left[\frac{n_0 c_s^2}{R} \frac{\partial (R \xi_R)}{\partial R} \right] + \frac{\nu}{\nu} \frac{\partial}{\partial R} \left[\frac{B_0^2}{R} \frac{\partial (R \xi_R)}{\partial R} \right] = 2 i \omega \Omega \xi_z - \frac{i k_z}{n_0} \frac{\partial}{\partial R} (n_0 c_s^2 \xi_z) \]
\[+ i k_z R (\Omega^2 - M_0 G_0 r^{-3}) \xi_z - \xi_R R \frac{\partial}{\partial R} (\Omega^2 - M_0 G_0 r^{-3}). \]

Of course these equations are more complicated than (5.11) and (5.12) because compressibility effects must be retained when \(\Omega^2 \neq M_0 G_0 r^{-3} \).

6.1. Self-consistent equilibrium in an axial magnetic field with gravity at \(\beta >> 1 \)

We consider the limit of the self-consistent equilibrium of Catto et al. (2015) with \(B_0 \) axial, \(\Omega^2 \propto R^{-3} \), \(T_0 \propto R^{-1} \), and axial pressure balance in the vicinity of the equatorial plane requiring
\[p_0 = 2n_0 T_0 = \bar{p}_0 e^{-\Delta R^2}, \]
with \(\bar{p}_0 \) a constant and \(\Delta R = 2(T_0 / MM_0 G_0)^{1/2} \). In this limit the motion cannot be strictly Keplerian since \(\Omega^2 > M_0 G_0 R^{-3} \) is required to find a solution. Also, disk formation is unlikely for the nearly axial equilibrium solutions found as \(\beta \) is required to be extremely large: \(\beta >> (\Omega^2 / (\Omega^2 - M_0 G_0 R^{-3}))^2 e^{-\Delta R^2} \). Taking \(\Delta R \sim 1 \), we can use \(n_0 \propto R \) to find \(R \partial n_0 / \partial R = R \). In addition, we have \(R \partial \Omega^2 / \partial R = -3 \Omega^2 \) so that using (6.4) and \(k^2 R^2 >> 1 \) for \(\beta >> 1 \) gives
In a strong gravitational field at high \(\beta \gg 2c_s^2/\gamma \Omega^2 R^2 \). Consequently, the departure from strict Keplerian rotation increases the size of the instability window when

\[
\frac{R^2}{\Omega^2 c_s^2} \left[2 + \frac{M_0 G_0}{\Omega^2 r^3} \right] > 1 - \frac{M_0 G_0}{\Omega^2 r^3} > 0,
\]

and decreases it otherwise. The smallest non-disk window of instability occurs in the Velikhov limit (4.15) when \(\Omega^2 R^2/c_s^2 << 1 \) and \(M_0 G_0/\Omega^2 r^3 << 1 \). Stability may only be possible for strong magnetic fields for when \(k^2 R^2 \ll 1 \) and

\[
\frac{\Omega^2 R^2}{\nu_A^2} \left[2 + \frac{M_0 G_0}{\Omega^2 r^3} + \frac{R^2 (\Omega^2 - M_0 G_0 r^{-3})^2}{\Omega^2 c_s^2} \right] < k^2 R^2 \leq 1,
\]

implying \(\beta \ll 2c_s^2/3\gamma \Omega^2 R^2 \sim 1 \) for our \(c_s^2 \sim \Omega^2 R^2 \) and \(M_0 G_0/\Omega^2 r^3 \sim 1 \) ordering.

Often the magnetic field is not cylindrically symmetric so the self-similar form of (4.14), \(\psi_0 = CH(\cos \theta)/r^\alpha \), allows solutions away from \(\alpha = -2 \) (see Figs. 1, 3 and 4 of Catto et al. 2015, for example, where \(\alpha = -3, -4 \) and -6 respectively). For smooth, slowly varying departures from cylindrical symmetry for which the radial magnetic field component is sufficiently weak, (6.8) can be generalized slightly by using \(n_0 \propto R^{-2\alpha - 3} \). In such cases

\[
\frac{2c_s^2}{\gamma \beta \Omega^2 R^2} \ll \frac{k^2 \nu_A^2}{\Omega^2} < 2 + \frac{M_0 G_0}{\Omega^2 r^3} + (2\alpha + 4) \frac{(\Omega^2 - M_0 G_0 r^{-3})^2}{\Omega^2} + \frac{R^2 (\Omega^2 - M_0 G_0 r^{-3})^2}{\Omega^2 c_s^2},
\]

with \(\alpha \leq -2 \) an eigenvalue determined by solving the self-similar form of the Grad-Shafranov equation, and where \(\alpha = -2 \) corresponds to the cylindrically symmetric limit. When \(\alpha < -2 \), stronger density variation further narrows the instability window; however, once \(k \alpha \) becomes too large the radial magnetic field may no longer be negligible.

It is important to realize that equilibrium solutions can be found for \(\beta \gg 1 \) and \(\Omega^2 > M_0 G_0 R^{-3} \) with very strong departures from cylindrical symmetry (see Figs. 2 and 5 of Catto et al. 2015 for examples). The general, but rather complicated, magnetorotational stability treatment in the next section is intended to deal these and other non-cylindrically symmetric equilibrium solutions for which the radial magnetic field cannot be ignored.

7. Stability in a general poloidal magnetic field for \(\beta > 1 \)

In a strong gravitational field at high \(\beta \), the magnetic field is comparatively weak. The
rotating frozen-in plasma is more easily distorted, with the field lines bulging outward substantially and the possibility of quite substantial departures from cylindrical symmetry.

To perform the stability analysis for an arbitrary axisymmetric poloidal magnetic field it is convenient to use the azimuthal, parallel, and Q = \psi_0 components of the \(\frac{\partial^2 \xi}{\partial t^2} \) equation:

\[
R \frac{\partial^3 \xi_z}{\partial t^3} + \nabla (\Omega R^2) \cdot \frac{\partial^2 \xi_z}{\partial t^2} = \nu_0^2 B_0^2 \tilde{B}_0 \cdot \nabla \left[R^2 \tilde{B}_0 \cdot \nabla \left(\xi_z \cdot \nabla \Omega + R^{-1} \frac{\partial \xi_z}{\partial t} \right) \right],
\]

(7.1)

\[
\left[\frac{\partial^2 \xi_z}{\partial t^2} - 2 \frac{\partial \xi_z}{\partial t} \Omega \nabla R + \frac{n_i}{n_0} \frac{\nabla p_0 + \nabla p_t}{M_{n_0}} \right] \cdot \tilde{B}_0 = \frac{\nu_0^2}{B_0^2} \tilde{B}_0 \cdot \nabla \left(\xi_z \cdot \nabla \psi_0 \right),
\]

(7.2)

and

\[
\left[\frac{\partial^2 \xi_z}{\partial t^2} - 2 \frac{\partial \xi_z}{\partial t} \Omega \nabla R + \frac{n_i}{n_0} \left(\Omega^2 R \nabla R - \frac{M_{n_0} G_0}{r^2} \nabla \Omega \right) \right] \cdot \nabla \psi_0 = \nu_0^2 R^2 \left\{ \nabla \cdot \left(\nabla \left(R^2 \xi_z \psi_0 \right) \right) \right\} \frac{\partial}{\partial \psi_0} \xi_z + \nu_0^2 R^2 \left\{ \nabla \cdot \left(\nabla \left(R^2 \xi_z \psi_0 \right) \right) \right\},
\]

(7.3)

where to remove \(J_0 \) in the last equation we used the Grad-Shafranov equation

\[
4\pi J_0 / c R = -\nabla \cdot \left(R^2 \xi_z \psi_0 \right) = R^2 \nu_0^2 A \nabla \psi_0 \left\{ (1/M_{n_0}) \nabla p_0 + M_{n_0} G_0 r^2 \nabla \Omega - \Omega^2 R \nabla R \right\}.
\]

(7.4)

To complete the description we only need \(n_1 \) and \(p_1 \) as given in section 3.

For the general analysis we write \(\nabla = \nabla \psi_0 \partial / \partial \psi_0 + B_0^2 \tilde{B}_0 \tilde{B}_0 \nabla + \nabla \psi_0 \partial / \partial \psi_0 \),

\[
\xi_z = (R B_0)^{-2} (\xi_z \cdot \nabla \psi_0) \nabla \psi_0 + B_0^{-2} \xi_z \cdot \tilde{B}_0 \tilde{B}_0 + \xi_z \cdot \nabla \psi_0 = (R B_0)^{-2} \xi_z \cdot \nabla \psi_0 + B_0^{-2} \xi_z \cdot \tilde{B}_0 + \xi_z \cdot \nabla \psi_0,
\]

(7.5)

and

\[
\nabla \xi_z = \tilde{B}_0 \cdot \nabla (B_0^{-1} \xi_z) + \nabla \cdot \left(R^2 B_0^{-2} \xi_z \cdot \nabla \psi_0 \right) = \tilde{B}_0 \cdot \nabla (B_0^{-1} \xi_z) + \nabla \cdot \left(B_0^{-2} \xi_z \cdot \nabla \psi_0 \right).
\]

(7.6)

Using the preceding, the equations for \(\xi_z \) and \(\xi_q \) become

\[
R \frac{\partial^3 \xi_z}{\partial t^3} + R^2 (\Omega \nabla R) \frac{\partial^2 \xi_z}{\partial t^2} + 2 \Omega (B_{0z} B_0^{-2} \xi_z \cdot \nabla \psi_0) + 2 \Omega B_{0z} B_0^{-2} \xi_z \cdot \nabla \psi_0) + R B_{0z} B_0^{-2} \xi_z \cdot \nabla \psi_0) + R B_{0z} B_0^{-2} \xi_z \cdot \nabla \psi_0) + R B_{0z} B_0^{-2} \xi_z \cdot \nabla \psi_0) = \nu_0^2 B_0^2 \tilde{B}_0 \cdot \nabla \left(R^2 \xi_z \cdot \nabla \psi_0 \right) + \nu_0^2 B_0^2 \tilde{B}_0 \cdot \nabla \left(R^2 \xi_z \cdot \nabla \psi_0 \right) + \nu_0^2 B_0^2 \tilde{B}_0 \cdot \nabla \left(R^2 \xi_z \cdot \nabla \psi_0 \right),
\]

(7.7)

and, after using the Grad-Shafranov equation and inserting \(p_1 \) and \(n_1 \),

\[
\frac{\partial^2 \xi_z}{\partial t^2} - 2 \frac{\partial \xi_z}{\partial t} \Omega \nabla B_0 R + \frac{\nabla \psi_0}{M_{n_0}} \cdot \nabla \left(\xi_z \cdot \nabla \psi_0 \right) = \frac{\nabla \psi_0}{M_{n_0}} \cdot \nabla \left(\xi_z \cdot \nabla \psi_0 \right) = \frac{\nabla \psi_0}{M_{n_0}} \cdot \nabla \left(\xi_z \cdot \nabla \psi_0 \right),
\]

(7.8)

where \(B_0 = \tilde{B}_0 \cdot \nabla R \) and \(\nabla R \cdot \nabla \psi_0 = R B_{0z} \). Inserting \(p_1 \) and \(n_1 \) and using

\[
R^2 \tilde{B}_0 \frac{\partial}{\partial \psi_0} \left(\xi_z \cdot \nabla \psi_0 \right) = -R^2 \nu_0^2 \frac{\partial}{\partial \psi_0} \left(\xi_z \cdot \nabla \psi_0 \right),
\]

\[
- \frac{R^2 \tilde{B}_0 \cdot \nabla \psi_0}{n_0} \frac{\nabla \psi_0}{R^2 \tilde{B}_0} \left(\frac{M_{n_0} G_0}{r^2} \nabla \Omega - \Omega^2 R \nabla R \right) \cdot \nabla \psi_0,
\]
we obtain a convenient form for the third equation:

\[
\begin{align*}
\frac{\partial^2 \xi}{\partial t^2} - 2 \frac{\partial \xi}{\partial t} \frac{\partial^2 B_0}{\partial t^2} \frac{\Omega R B_{0z}}{M_n \partial \psi_0} - \frac{R^2 B_0^2}{M_n \partial \psi_0} (\gamma p_0 \mathbf{V} \cdot \xi + \xi \mathbf{B}_0 \cdot \nabla p_0) \\
- \left(n_0^{-1} \xi \cdot \nabla n_0 + \mathbf{V} \cdot \xi \right) \left(\frac{M_0 G}{r^2} \mathbf{V} r - \Omega^2 R \mathbf{V} R \right) \cdot \nabla \psi_0 + n_0^{-1} \mathbf{V} \psi_0 \cdot \nabla \left[\frac{\xi \mathbf{n}_0}{R^2 B_0^2} \left(\frac{M_0 G}{r^2} \mathbf{V} r - \Omega^2 R \mathbf{V} R \right) \cdot \mathbf{V} \psi_0 \right] \\
= v_A^2 R^2 \left[\mathbf{B}_0 \cdot \nabla \left(\frac{\mathbf{V}_0 \cdot \nabla \psi_0}{R^2 B_0^2} \right) - \frac{\xi}{\psi_0} \mathbf{V} \cdot \left(R^2 \nabla \psi_0 \right) + \mathbf{V} \cdot \left(\frac{\partial \xi}{\partial \psi_0} \cdot \nabla \left(R^2 \nabla \psi_0 \right) \right) \right],
\end{align*}
\]
(7.9)

where in the axial magnetic field limit

\[
\mathbf{V} \cdot \left(\frac{\partial \xi}{\partial \psi_0} \cdot \nabla \psi_0 \right) - \frac{\xi}{\psi_0} \mathbf{V} \cdot \left(R^2 \nabla \psi_0 \right) \rightarrow \frac{1}{B_0^2 R} \frac{\partial}{\partial R} \left[\frac{B_0^2}{R} \frac{\partial}{\partial R} \left(R \xi R \right) \right].
\]

Using \(\xi \mathbf{n}_0^{-1} \partial n_0 / \partial \psi_0 + \mathbf{V} \cdot \left(\mathbf{B}_0 \mathbf{V} \mathbf{r} - \Omega^2 R \mathbf{V} \mathbf{R} \right) \cdot \nabla \psi_0 = n_0^{-1} \mathbf{V} \cdot \left(\mathbf{B}_0 \mathbf{V} \mathbf{r} - \Omega^2 R \mathbf{V} \mathbf{R} \right) \cdot \nabla \psi_0 \) to simplify further gives

\[
\begin{align*}
\frac{\partial^2 \xi}{\partial t^2} - \frac{R^2 B_0^2}{M_n \partial \psi_0} \frac{\partial}{\partial t} \left(\gamma p_0 \mathbf{V} \cdot \xi + \xi \mathbf{B}_0 \cdot \nabla p_0 \right) \\
+ \xi \mathbf{B}_0 \cdot \nabla \psi_0 \cdot \left[\frac{M_0 G}{r^2} \mathbf{V} r - \Omega^2 R \mathbf{V} R \right] \cdot \nabla \psi_0 \\
= v_A^2 R^2 \left[\mathbf{B}_0 \cdot \nabla \left(\frac{\mathbf{V}_0 \cdot \nabla \psi_0}{R^2 B_0^2} \right) - \frac{\xi}{\psi_0} \mathbf{V} \cdot \left(R^2 \nabla \psi_0 \right) + \mathbf{V} \cdot \left(\frac{\partial \xi}{\partial \psi_0} \cdot \nabla \left(R^2 \nabla \psi_0 \right) \right) \right],
\end{align*}
\]
(7.10)

where in the axial magnetic field limit \(\mathbf{V} \cdot \left(\mathbf{B}_0 \mathbf{V} \mathbf{r} - \Omega^2 R \mathbf{V} \mathbf{R} \right) \cdot \nabla \psi_0 \rightarrow 0 \).

The three equations (7.7), (7.8) and (7.10) are the most general forms of our equations for the three components of the displacement \(\xi_\xi, \xi_\psi, \) and \(\xi_\varphi \). They are the full ideal MHD representation for the magnetorotational instability for axisymmetric perturbations to a self-consistent axisymmetric magnetic field having both radial and axial components at high \(\beta \).

Our three displacement equations are now in the desired form to begin to employ the eikonal approximation by assuming

\[
\xi_\xi \propto e^{-i \omega t + i S},
\]
(7.11)

with \(S \) independent of \(\xi, \kappa_\psi = \mathbf{V} S = k_\psi r \mathbf{V} \psi_0 + k_\parallel \mathbf{B}_0 \cdot \nabla S, \kappa_\xi = \mathbf{B}_0 \cdot \mathbf{V} \psi_0, \kappa_\parallel = \mathbf{V} \psi_0 \mathbf{B}_0, \) and the wave vector assumed to be slowly varying. As in earlier sections we only perform the eikonal treatment in the parallel direction to start. We need to be careful with \(\psi_0 \) derivatives in \(c_s^2 \) terms as before, but we also want to retain departures from cylindrical symmetry for the magnetic field.

For a general poloidal magnetic field we assume \(k_\parallel^2 R^2 \gg 1 \) and

\[
c_s^2 / R^2 \sim k_\parallel c_s^2 \sim \Omega^2 \sim k_\parallel c_s^2 \gg \omega^2, k_\parallel^2 R^2 \gg 1 \text{ and } \beta \gg 1 \]

and use \(k_\parallel = k^2 = k_\parallel^2 + k_\perp^2. \) We
assume small wavelengths parallel unperturbed magnetic field,
\[k_n \sim v_0^{-1} B_0^{-1} \tilde{B}_0 \cdot \nabla \xi_\psi \gg B_0^{-1} \tilde{B}_0 \cdot \nabla p_0 \sim n_0^{-1} B_0^{-1} \tilde{B}_0 \cdot \nabla B_0 \sim R^{-1} B_0^{-1} \tilde{B}_0 \cdot \nabla R , \]
so that
\[\tilde{B}_0 \cdot \nabla (\gamma p_0 \nabla \xi_\psi) \gg n_0^{-1} \tilde{B}_0 \cdot \nabla p_0 \gg \xi_\psi \nabla p_0 \sim \xi_\psi \tilde{B}_0 \cdot \nabla (\partial p_0 / \partial \psi_0) , \]
and recall \(\tilde{B}_0 \cdot \nabla (d\Omega / dq_\psi) = 0 \). Then the \(\xi_\xi \) equation gives
\[\quad i \omega (\omega^2 - k^2_\psi) \xi_\psi = \left[(\omega^2 - k^2_\psi) (\partial \Omega / \partial q_\psi) + 2\omega^2 \Omega R^{-1} B_0^{-1} B_0 \right] \xi_\psi + 2\omega^2 \Omega B_0^{-1} B_0 R \xi_\psi . \quad (7.12) \]
The \(\xi_\xi \) equation contains \(\xi_\psi \) dependence which accounts for a new non-axial field effect.

Using the eikonal approximation on the equation for \(\xi_\psi \) and neglecting the small terms already noted we obtain
\[(\omega^2 - k^2_\psi) \xi_\psi = 2i \omega \Omega R^{-1} B_0 R \xi_\xi + ik_\psi \left[\xi_\psi R^{-2} B_0^{-2} \nabla \psi_0 (\partial_\psi (\Omega_0) - \Omega^2 R V R) - c_s^2 \nabla \cdot (\xi_\psi R^{-2} B_0^{-2} \nabla \psi_0) \right] , \quad (7.13) \]
where once again all components of the displacement enter. In the \(\xi_\xi \) equation we have been careful to retain seemingly small terms. We will eventually find that the \(\partial \xi_\psi / \partial \psi_0 \) terms will cancel exactly and the remaining large \(\partial^2 \xi_\psi / \partial \psi_0^2 \) term will enter with a small coefficient at marginality (\(\omega^2 \to 0 \)) as in earlier sections. For this reason we must retain \(\xi_\psi R^{-2} B_0^{-2} \nabla \psi_0 (\partial_\psi (\Omega_0 - \Omega^2 R V R) \right) \), as well as \(c_s^2 \nabla \cdot (\xi_\psi R^{-2} B_0^{-2} \nabla \psi_0) \).

For the third equation we use\[\partial \xi_\psi / \partial \psi_0 \gg \xi_\psi B_0^{-1} \partial B_0 / \partial \psi_0 \sim \xi_\psi B_0^{-1} \partial p_0 / \partial \psi_0 \sim \xi_\psi R^{-1} \partial R / \partial \psi_0 , \]
for \(v^2_\psi \) terms, but we again keep seemingly small terms to carefully deal with the later cancelation in \(c_s^2 \) terms:
\[(\omega^2 - k^2_\psi) \xi_\psi + R^2 B_0^2 \partial \xi_\psi / \partial \psi_0 + c_s^2 R^2 B_0^2 \frac{\partial}{\partial \psi_0} \left[\frac{\nabla \psi_0 \cdot \nabla (\xi_\psi R^{-2} B_0^{-2} \nabla \psi_0)}{B_0^2 R^2} \right] \]
\[\quad = 2i \omega \Omega R B_0 \xi_\psi - ik \left[\xi_\psi (\Omega_0) R^{-2} B_0^{-1} \nabla \psi_0 + c_s^2 R^2 B_0^2 \frac{\partial}{\partial \psi_0} \left(p_0 \xi_\psi \right) \right] , \quad (7.14) \]
where to combine terms we use
\[R^2 B_0^2 (\partial / \partial \psi_0) (R^{-2} B_0^{-1} \nabla \psi_0 = \nabla \psi_0 \cdot \nabla (R^{-2} B_0^{-1} \nabla \psi_0) = Q V \cdot (R^{-2} B_0^{-1} \nabla \psi_0 \cdot Q \cdot (R^{-2} B_0^{-1} \nabla \psi_0) . \]
We retain all the \(\xi_\xi \) terms because of the cancelation that will occur as already noted.

To highlight a new effect due to the non-axial magnetic fields we consider marginality (\(\omega \to 0 \)) for strict Keplerian rotation (\(\Omega_0 R V \cdot \nabla \psi_0 = \Omega^2 R V R \cdot \nabla \psi_0 \)), to reduce these equations to
\[i \omega \xi_\perp = \xi_\parallel R d \Omega / d \psi_0 , \]
\[k_x^2 c_s^2 \xi_\parallel = -2 i \omega \Omega B_0^2 B_{0R}^2 \xi_\parallel + i k_c c_s^2 \nabla \cdot (\xi_\parallel R^{-2} B_0^2 \nabla \psi_0) , \]

and
\[R^2 B_0^2 c_s^2 \frac{\partial^2 \xi_\parallel}{\partial \psi_0^2} + \frac{c_s^3 R^2 B_0^2}{p_0} \frac{\partial}{\partial \psi_0} \left[p_0 \nabla \cdot (\xi_\parallel \nabla \psi_0) \right] = 2 i \omega \Omega R B_{0z} \xi_\parallel - \frac{i k_c c_s^2 R^2 B_0^2}{p_0} \frac{\partial}{\partial \psi_0} \left(p_0 \xi_\parallel \right) , \]

Combining to eliminate \(\xi_\perp \) and \(\xi_\parallel \) and using the radial eikonal form instability occurs if
\[k_x^2 c_s^2 < -R^2 [B_{0z} - k_x k_{0z}^2 B_{0R}] / d \Omega^2 / d \psi_0 . \]

The new term that appears in the preceding is always destabilizing when \(k_x^{-1} k_{0z} B_{0R} B_{0z}^{-1} < 0 \) and accounts for non-axial magnetic field effects. Moreover, instability occurs for \(d \Omega^2 / d \psi_0 > 0 \) when \(k_x^{-1} k_{0z} B_{0R} B_{0z}^{-1} > 1 \), a new limit not previously noted.

The eikonal treatment for the general axisymmetric poloidal magnetic field case is quite complex so the details are relegated to the Appendix. The general condition for instability is found from \(\omega^2 = 0 \) to be
\[k_x^2 c_s^2 < \frac{\left[(M_0 G_0 r^2 \nabla r - \Omega^2 R R) \cdot \nabla \psi_0 \right]^2}{R^2 B_0^2 c_s^2} \]
\[- [B_{0z} - k_x k_{0z} R^2] \frac{d \Omega^2}{d \psi_0} + (M_0 G_0 r^2 \nabla r - \Omega^2 R R) \cdot \nabla \psi_0 \frac{\partial n_0}{\partial \psi_0} , \]

where \(\nabla \psi_0 \cdot \nabla n_0 = R^2 B_0^2 \partial n_0 / \partial \psi_0 \). For our ordering \((k_x / k_{0z})^2 \gg 1 \), making the new non-axial magnetic field term potential important when \(|k_x k_{0z} B_{0R} B_{0z}^{-1}| \gg |k_{0z} B_{0z}^{-1} | \). The preceding is our most general expression for gravitational magnetorotational instability. Once again strict Keplerian motion removes compressibility and density gradient effects.

8. Discussion and conclusions

We have re-examined magnetorotational stability with and without gravity by retaining compressibility and density variation, and allowing general axisymmetric poloidal magnetic fields in fully self-consistent equilibria. Within the limitations of a geometric optics or eikonal analysis, we have obtained general expressions for the stability threshold, which is found to have a different form in the absence of gravity than in the presence of strict Keplerian motion, as can be seen by comparing (4.13) and (5.7). Further subtle and important modifications arise when gravity is present if the rotation frequency is general as can be seen by the appearance of compressibility and density gradient terms in (6.4). For the \(\beta \gg 1 \) equilibria of Catto et al. (2015) with rotation stronger than Keplerian these compressibility and density gradient effects become
important as seen by (6.8). Interestingly, the incompressible limit without gravity, but with density variation is unstable for the model equilibrium of Catto and Krasheninnikov (2015) for a geometric optics approach when $2\Omega^2 > k^2v_A^2$. However, in the strict Keplerian limit of Balbus and Hawley (1991), compressibility and density variation do not matter and $3\Omega^2 > k^2v_A^2$ is required for instability.

In the absence of gravity our WKB results are consistent with the unbounded medium case of Velikhov (1959) in the incompressible limit he considered. Our general compressibility results modify his results and are illustrated by applying them to the self-consistent equilibrium of Catto and Krasheninnikov (2015). This analysis highlights the need to treat the radial WKB analysis carefully to fully retain compressibility and radial density variation as well as the radial variation of the rotation frequency. Compressibility is found to completely stabilize the Velikhov (1959) when $3c_S^2/\Omega^2R^2 < 1$. However, when $3c_S^2/\Omega^2R^2 > 1$ instability occurs when

$$1 - \frac{\Omega^2R^2}{3c_S^2} > \frac{k^2v_A^2}{2\Omega^2} = \frac{k^2c_S^2}{\gamma\beta\Omega^2},$$

thereby requiring $\beta \gg 1$. The self-similar equilibrium for this case without gravity has a magnetic field strength that increases with radius as in most of the cases with gravity.

In the presence of gravity our results are in agreement with Balbus and Hawley (1991) and Hawley et al. (1995) for strict Keplerian motion, but there are subtle and significant differences whenever there are departures from strict Keplerian motion or non-axial magnetic field effects. Departure from strict Keplerian motion gives rise to compressibility and density gradient effects in our cylindrically symmetric and general axisymmetric magnetic field treatments for $\beta > 1$. These extensions allow us to obtain a general threshold for gravitational magnetorotational instability in thermal magnetized plasmas. The results depend explicitly on gravity, compressibility, and density variation as well as rotation frequency. In the presence of a sufficiently strong radial magnetic field at $\beta > 1$, the radial component of the magnetic field provides further destabilization based on (7.19), and the density gradient term depends on axial as well as radial gradients.

In the strict Keplerian limit these compressibility and density gradient effects vanish. For an axial magnetic field the disk width Δ is given by $\Delta/R = 2T^{1/2}/M^{1/2}\Omega R << 1$, limiting perturbation wavelengths in the z direction. Then, for $k_\Delta > 2\pi$ and $k^2R^2 >> 1$, the instability requires large β.

23
\[\beta > \frac{4\pi^2}{3}. \]

This limit is the case for which Balbus' (2006) intuitive physical picture of masses attached by springs is most appropriate.

Whether instability is responsible for shedding excess momentum in an accretion disk is unclear, of course, based on a linear, eikonal analysis of axisymmetric perturbations. The nonlinear evolution will have to be determined by sophisticated nonlinear global simulations, presumably requiring full kinetic simulations with dissipation. Clearly much work remains if speculation is to be converted to substance. To do so requires using fully self-consistent global magnetized equilibria when performing global simulations allowing non-axisymmetric fluctuations.

Acknowledgements

PJC thanks Merton College and Peierls Centre for Theoretical Physics at Oxford for rekindling interest in this problem. He is particularly grateful and indebted to Alex Schekochihin of Merton College at Oxford who made his visit possible and provided incomparable hospitality. PJC also thanks his colleague Nuno Loureiro for informative discussions. Work supported by the US Department of Energy grants at DE-FG02-91ER-54109 at MIT and DE-FG02-04ER54739 at UCSD.

Appendix: General Poloidal Field Case

Equations (7.12) to (7.14) can be combined to obtain the general eikonal stability condition. We first eliminate \(\xi_\psi \) from the \(\xi_\psi \) equation to obtain

\[
\imath \omega [(\omega^2 - k_\parallel^2 v_A^2) \xi_\psi + \frac{4\omega^2 B_0^2}{B_0^* (\omega^2 - k_\parallel^2 c_s^2)}] = \left(\frac{\omega^2 - k_\parallel^2 v_A^2}{(\omega^2 - k_\parallel^2 c_s^2)}\right) + 2\omega^2 \Omega R^{-1} B_0^2 B_{0z} \xi_\psi
\]

\[
+ \frac{2\imath B_0^\parallel \omega B_{0R}^2 (\xi_\psi R^{-2} B_0^2 \nabla \psi_0 \cdot (M \cdot G \cdot r^{-2} \nabla r - \Omega^2 R \nabla R) - c_s^2 \nabla \cdot (\xi_\psi R^{-2} B_0^2 \nabla \psi_0))}{B_0^2 (\omega^2 - k_\parallel^2 c_s^2)}].
\]

Eliminating \(\xi_\psi \) from the \(\xi_\psi \) equation we find

\[
(\omega^2 - k_\parallel^2 v_A^2) \xi_\psi + R^2 B_0^2 v_A^2 \frac{\partial^2 \xi_\psi}{\partial \psi_0^2} + \frac{c_s^2 R^2 B_0^2}{p_0} \frac{\partial}{\partial \psi_0} \left(p_0 \nabla \cdot \left(\frac{\xi_\psi}{B_0^2 R^2} \nabla \psi_0 \right) \right) - \frac{2\imath \omega \Omega B_{0z} \xi_\psi}{B_0^2 (\omega^2 - k_\parallel^2 c_s^2)}
\]

\[
+ \xi_\psi \frac{(M \cdot G \cdot r^{-2} \nabla r - \Omega^2 R \nabla R \cdot \nabla \psi_0)^2}{B_0^2 R^2} \nabla \cdot \left(\frac{\nabla \psi_0}{(M \cdot G \cdot r^{-2} \nabla r - \Omega^2 R \nabla R \cdot \nabla \psi_0)^2} \right) = \xi_\psi \frac{2\imath \omega p_0 B_{0R} \xi_\psi}{B_0^2 (\omega^2 - k_\parallel^2 c_s^2)}
\]

\[
+ k_s^2 R^2 B_0^2 p_0^{-1} \left(R^{-2} B_0^2 (M \cdot G \cdot r^{-2} \nabla r - \Omega^2 R \nabla R) \cdot \nabla \psi_0 + c_s^2 \frac{\partial}{\partial \psi_0} \left(\frac{2\imath \omega p_0 B_{0R} \xi_\psi}{B_0^2 (\omega^2 - k_\parallel^2 c_s^2)} \right) \right)
\]
\[+ \frac{k_0 p_0}{(\omega^2 - k_i^2 v_A^2)} \left\{ \xi_y R^2 B_0^2 \left(\frac{\partial^2 \xi_y}{\psi_0^2} + \frac{2 c_s^2 R^2 B_0^2}{\omega^2} \frac{\partial}{\psi_0} \left[p_0 \nabla \cdot \left(\frac{\xi_y R^2 B_0^2}{\alpha^2} \nabla \psi_0 \right) \right] - 2 i \alpha \Omega R B_0 \xi_c \right\} \right. \]

Next, we may use
\[c_s^2 R^2 B_0^2 \frac{\partial \xi_c}{\partial \psi_0} >> \xi_c (M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \]

for the \(\xi_c \) terms in this last equation, since cancelation of \(\xi_c \) terms is not an issue.

Doing so we obtain
\[\left(\omega^2 - k_i^2 v_A^2 \right) \xi_y + R^2 B_0^2 \frac{\partial^2 \xi_y}{\psi_0^2} + \frac{2 c_s^2 R^2 B_0^2}{\omega^2} \frac{\partial}{\psi_0} \left[p_0 \nabla \cdot \left(\frac{\xi_y R^2 B_0^2}{\alpha^2} \nabla \psi_0 \right) \right] - 2 i \alpha \Omega R B_0 \xi_c \]

\[\left(\omega^2 - k_i^2 v_A^2 \right) \xi_y + R^2 B_0^2 \frac{\partial^2 \xi_y}{\psi_0^2} + \frac{2 c_s^2 R^2 B_0^2}{\omega^2} \frac{\partial}{\psi_0} \left[p_0 \nabla \cdot \left(\frac{\xi_y R^2 B_0^2}{\alpha^2} \nabla \psi_0 \right) \right] = \]

\[\frac{2 k_0 c_s^2 R^2 B_0^2 \alpha \Omega R B_0 \xi_c}{(\omega^2 - k_i^2 v_A^2)} \frac{\partial \xi_c}{\psi_0} \]

\[\frac{k_0 p_0}{(\omega^2 - k_i^2 v_A^2)} \left\{ \xi_y R^2 B_0^2 \left(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R \right) \cdot \nabla \psi_0 - c_s^2 \nabla \cdot \left(\xi_y R^2 B_0^2 \nabla \psi_0 \right) \right\} \]

(A.3)

Combining \(\frac{\partial^2 \xi_y}{\psi_0^2} \) terms and canceling the \(\frac{\partial \xi_c}{\psi_0} \) terms in the \(c_s^2 \) terms leaves

\[\left(\omega^2 - k_i^2 v_A^2 \right) \xi_y + R^2 B_0^2 \frac{\partial^2 \xi_y}{\psi_0^2} + \frac{\omega^2 c_s^2 R^2 B_0^2}{\omega^2} \frac{\partial}{\psi_0} \left[p_0 \nabla \cdot \left(\frac{\xi_y R^2 B_0^2}{\alpha^2} \nabla \psi_0 \right) \right] = \]

\[\frac{\xi_y}{R^2 B_0^2} \left[(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \right] - \xi_c \left[(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \right] \]

\[\frac{2 k_0 c_s^2 R^2 B_0^2 \alpha \Omega R B_0 \xi_c}{(\omega^2 - k_i^2 v_A^2)} \frac{\partial \xi_c}{\psi_0} \frac{k_0 p_0}{(\omega^2 - k_i^2 v_A^2)} \left\{ \xi_y R^2 B_0^2 \left(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R \right) \cdot \nabla \psi_0 - c_s^2 \nabla \cdot \left(\xi_y R^2 B_0^2 \nabla \psi_0 \right) \right\} \]

where we use
\[\frac{\partial}{\psi_0} \left(\frac{p_0 Q}{R^2 B_0^2} - \nabla \cdot \left(\frac{\nabla \psi_0}{R^2 B_0^2} \right) \right) = \frac{1}{p_0 B_0^2} \nabla \psi_0 \nabla \left(\frac{p_0 Q}{R^2 B_0^2} - \nabla \cdot \left(\frac{\nabla \psi_0}{R^2 B_0^2} \right) \right) = \frac{p_0 Q^2}{R^2 B_0^2} \nabla \cdot \left(\frac{\nabla \psi_0}{R^2 B_0^2} \right). \]

Notice that within the eikonal approximation it is tempting to assume
\[\frac{\omega^2 c_s^2 R^2 B_0^2}{\omega^2 - k_i^2 v_A^2} \frac{\partial}{\psi_0} \left[p_0 \nabla \cdot \left(\frac{\xi_y R^2 B_0^2}{\alpha^2} \nabla \psi_0 \right) \right] \]

\[>> \frac{k_0 \left(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R \right) \cdot \nabla \psi_0}{R^2 B_0^2 (\omega^2 - k_i^2 v_A^2)} \]

however, at marginality \((\omega^2 \rightarrow 0) \) this large term becomes unimportant so we have been extra careful to retain the next largest terms.

Inserting \(\xi_c \) in its lowest order form
\[\text{i} \omega \left(\omega^2 - k_i^2 v_A^2 \right) \left\{ \xi_c R^2 B_0^2 \frac{\partial}{\psi_0} \left(\frac{\nabla \psi_0}{R^2 B_0^2} \right) + 2 \omega^2 \Omega R B_0 \xi_c \frac{\partial}{\psi_0} \right\} \]

(A.5)
into the preceding equation for \(\xi_{\psi} \) we can finally use the remaining eikonal approximation \(\partial_{\xi_{\psi}}/\partial \psi_0 = i k_{\perp} \xi_{\psi} \) to obtain the full stability relation

\[
\omega^2 - k^2 \nabla_A^2 = \frac{\omega^2 k_{\parallel}^2 c_s^2}{(\omega^2 - k_{\parallel}^2 c_s^2)} \frac{\omega^2 k_{\perp}^2 c_s^2}{(\omega^2 - k_{\perp}^2 c_s^2)} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\parallel}^2 c_s^2) \nabla \psi_0)} \right)
\]

\[
- \frac{\omega^2 k_{\parallel}^2 c_s^2}{(\omega^2 - k_{\parallel}^2 c_s^2)} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\perp}^2 c_s^2) \nabla \psi_0)} \right)
\]

\[
- \frac{\partial_{\psi_0}}{\partial \psi_0} \frac{\omega^2 k_{\perp}^2 c_s^2}{\omega^2 - k_{\perp}^2 c_s^2} \frac{\omega^2 k_{\parallel}^2 c_s^2}{\omega^2 - k_{\parallel}^2 c_s^2} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\perp}^2 c_s^2) \nabla \psi_0)} \right)
\]

\[
\left[(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \right] \nabla \cdot \left(\frac{\nabla \psi_0}{\psi_0} \right)
\]

\[
- \frac{\partial_{\psi_0}}{\partial \psi_0} \frac{\omega^2 k_{\perp}^2 c_s^2}{\omega^2 - k_{\perp}^2 c_s^2} \frac{\omega^2 k_{\parallel}^2 c_s^2}{\omega^2 - k_{\parallel}^2 c_s^2} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\perp}^2 c_s^2) \nabla \psi_0)} \right)
\]

\[
\left[(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \right] \nabla \cdot \left(\frac{\nabla \psi_0}{\psi_0} \right)
\]

\[
+ [B_{0z} - \frac{k_{\parallel} B_{0R}}{k_{\parallel}}] \left(\frac{\omega^2 k_{\perp}^2 c_s^2}{\omega^2 - k_{\perp}^2 c_s^2} \right) \frac{\omega^2 k_{\parallel}^2 c_s^2}{\omega^2 - k_{\parallel}^2 c_s^2} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\perp}^2 c_s^2) \nabla \psi_0)} \right)
\]

\[
\left[(M_0 G_0 r^{-2} \nabla r - \Omega^2 R V R) \cdot \nabla \psi_0 \right] \nabla \cdot \left(\frac{\nabla \psi_0}{\psi_0} \right)
\]

\[
+ [B_{0z} - \frac{k_{\parallel} B_{0R}}{k_{\parallel}}] \left(\frac{\omega^2 k_{\perp}^2 c_s^2}{\omega^2 - k_{\perp}^2 c_s^2} \right) \frac{\omega^2 k_{\parallel}^2 c_s^2}{\omega^2 - k_{\parallel}^2 c_s^2} \left(\frac{\omega^2}{R^2 B_0^2} \cdot \frac{\nabla \psi_0}{((\omega^2 - k_{\perp}^2 c_s^2) \nabla \psi_0)} \right)
\]

At marginality (A.7) reduces to (7.19).

References

