A Two-Optical-Path Laser Fluorescence
Signal Extraction Method

X. Z. Yao†, T. F. Yang and F. R. Chang-Díaz‡
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Resonance Fluorescence of neutral hydrogen illuminated by H_α radiation has been used as a technique for spatially and temporally resolved density measurements of neutral hydrogen in high temperature plasmas. The fluorescence signal, very weak and buried in the background of stray laser light and H_α emission, is very difficult to extract and the measurement is inaccurate. This paper discusses a Two-Optical-Path signal extraction method. One optical path carries the fluorescence signal and the background (stray laser light and H_α emission), whereas the other path carries only the background signal. Combining these two signals a clean fluorescence signal can be isolated by subtracting out the background using a differential amplifier. The measurement is obtained instantaneously in one pulse rather than the double-pulse technique. This greatly improves the accuracy of the measurement as well as the time resolution.

† Institute of Physics, Chinese Academy of Sciences, Beijing, China
‡ NASA Johnson Space center, Houston, Texas