COLLECTIVE INSTABILITIES DRIVEN BY ANODE PLASMA IONS AND ELECTRONS IN A
NONRELATIVISTIC CYLINDRICAL DIODE WITH APPLIED MAGNETIC FIELD

Ronald C. Davidson
Plasma Fusion Center
Massachusetts Institute of Technology, Cambridge, MA 02139

Kang T. Tsang
Science Applications Inc., Boulder, CO 80302

Han S. Uhm
Naval Surface Weapons Center, Silver Spring, MD 20910

ABSTRACT

Use is made of the macroscopic cold-fluid-Poisson equations to investigate
the electrostatic stability properties of nonrelativistic, nonneutral electron
flow in a cylindrical diode with applied magnetic field $B_0 \hat{z}$. The cathode is
located at $r=a$ and the anode is located at $r=b$. Space-charge-limited flow with
$n_0^0(r=a)=0$ is assumed. Detailed stability properties are investigated analyti-
cally and numerically for electrostatic flute perturbations with $\beta/\beta_{te}=0$.
Particular emphasis is placed on the influence of neutral anode plasma on
stability behavior assuming uniform cathode electron density (\hat{n}_b) extending
from the cathode ($r=a$) to $r=r_b$, and uniform anode plasma density ($\hat{n}_a=Z_i \hat{n}_i$)
extending from $r=r_p$ to the anode ($r=b$). Depending on the cathode electron
density (as measured by $s_b=\hat{n}_b/a^2$), the anode plasma density (as measured by
$s=\hat{n}_a/a^2$), the diode aspect ratio, etc., it is found that there can be a
strong coupling of the anode plasma to the cathode electrons, and a concomitant
large influence on detailed stability behavior for both the high-frequency
(electron-driven) and low-frequency (ion-driven) branches. Detailed stability
properties are investigated over a wide range of cathode electron density, anode
plasma density, diode aspect ratio, etc.