2013

NRL PLASMA FORMULARY

J.D. Huba
Beam Physics Branch
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375

Supported by
The Office of Naval Research
CONTENTS

Numerical and Algebraic ... 3
Vector Identities ... 4
Differential Operators in Curvilinear Coordinates 6
Dimensions and Units .. 10
International System (SI) Nomenclature 13
Metric Prefixes ... 13
Physical Constants (SI) ... 14
Physical Constants (cgs) ... 16
Formula Conversion .. 18
Maxwell’s Equations ... 19
Electricity and Magnetism ... 20
Electromagnetic Frequency/Wavelength Bands 21
AC Circuits .. 22
Dimensionless Numbers of Fluid Mechanics 23
Shocks ... 26
Fundamental Plasma Parameters 28
Plasma Dispersion Function 30
Collisions and Transport ... 31
Approximate Magnitudes in Some Typical Plasmas 40
Ionospheric Parameters .. 42
Solar Physics Parameters ... 43
Thermonuclear Fusion ... 44
Relativistic Electron Beams .. 46
Beam Instabilities ... 48
Lasers ... 51
Atomic Physics and Radiation 53
Atomic Spectroscopy ... 59
Complex (Dusty) Plasmas ... 62
References ... 66
Afterword ... 71
NUMERICAL AND ALGEBRAIC

Gain in decibels of \(P_2 \) relative to \(P_1 \)

\[
G = 10 \log_{10}(P_2/P_1).
\]

To within two percent

\[
(2\pi)^{1/2} \approx 2.5; \quad \pi^2 \approx 10; \quad e^3 \approx 20; \quad 2^{10} \approx 10^3.
\]

Euler-Mascheroni constant\(^1 \) \(\gamma = 0.57722 \)

Gamma Function \(\Gamma(x + 1) = x\Gamma(x) \):

\[
\begin{align*}
\Gamma(1/6) &= 5.5663 & \Gamma(3/5) &= 1.4892 \\
\Gamma(1/5) &= 4.5908 & \Gamma(2/3) &= 1.3541 \\
\Gamma(1/4) &= 3.6256 & \Gamma(3/4) &= 1.2254 \\
\Gamma(1/3) &= 2.6789 & \Gamma(4/5) &= 1.1642 \\
\Gamma(2/5) &= 2.2182 & \Gamma(5/6) &= 1.1288 \\
\Gamma(1/2) &= 1.7725 = \sqrt{\pi} & \Gamma(1) &= 1.0
\end{align*}
\]

Binomial Theorem (good for \(| x | < 1 \) or \(\alpha = \) positive integer):

\[
(1 + x)^\alpha = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k \equiv 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \ldots.
\]

Rothe-Hagen identity\(^2 \) (good for all complex \(x, y, z \) except when singular):

\[
\sum_{k=0}^{n} \frac{x}{x + k z} \binom{k}{x+kz} \frac{y}{y+(n-k)z} \frac{y+(n-k)z}{n-k} = \frac{x+y}{x+y+nz} (n+\frac{x+y+nz}{n}).
\]

Newberger’s summation formula\(^3 \) [good for \(\mu \) nonintegral, \(\text{Re} (\alpha + \beta) > -1 \)]:

\[
\sum_{n=-\infty}^{\infty} \frac{(-1)^n J_{\alpha-\gamma n}(z) J_{\beta+\gamma n}(z)}{n+\mu} = \frac{\pi}{\sin \mu \pi} J_{\alpha+\gamma \mu}(z) J_{\beta-\gamma \mu}(z).
\]
VECTOR IDENTITIES

Notation: \(f, g \), are scalars; \(\mathbf{A}, \mathbf{B} \), etc., are vectors; \(\mathbf{T} \) is a tensor; \(\mathbf{I} \) is the unit dyad.

1. \(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{A} \times \mathbf{B} \cdot \mathbf{C} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A} = \mathbf{B} \times \mathbf{C} \cdot \mathbf{A} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{C} \times \mathbf{A} \cdot \mathbf{B}
 \)
2. \(\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{C} \times \mathbf{B}) \times \mathbf{A} = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}
 \)
3. \(\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0
 \)
4. \((\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C}) (\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D}) (\mathbf{B} \cdot \mathbf{C})
 \)
5. \((\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \times \mathbf{B} \cdot \mathbf{D}) \mathbf{C} - (\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}) \mathbf{D}
 \)
6. \(\nabla (fg) = \nabla (gf) = f \nabla g + g \nabla f
 \)
7. \(\nabla \cdot (f \mathbf{A}) = f \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f
 \)
8. \(\nabla \times (f \mathbf{A}) = f \nabla \times \mathbf{A} + \nabla f \times \mathbf{A}
 \)
9. \(\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B}
 \)
10. \(\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}
 \)
11. \(\mathbf{A} \times (\nabla \times \mathbf{B}) = (\nabla \mathbf{B}) \cdot \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}
 \)
12. \(\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}
 \)
13. \(\nabla^2 f = \nabla \cdot \nabla f
 \)
14. \(\nabla^2 \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A}
 \)
15. \(\nabla \times \nabla f = 0
 \)
16. \(\nabla \cdot \nabla \times \mathbf{A} = 0
 \)

If \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \) are orthonormal unit vectors, a second-order tensor \(\mathbf{T} \) can be written in the dyadic form

\[\mathbf{T} = \sum_{i,j} T_{ij} \mathbf{e}_i \mathbf{e}_j \]

In cartesian coordinates the divergence of a tensor is a vector with components

\[(\nabla \cdot \mathbf{T})_i = \sum_j (\partial T_{ji}/\partial x_j) \]

[This definition is required for consistency with Eq. (29)]. In general

\[\nabla \cdot (\mathbf{A} \mathbf{B}) = (\nabla \cdot \mathbf{A}) \mathbf{B} + (\mathbf{A} \cdot \nabla) \mathbf{B} \]

\[\nabla \cdot (f \mathbf{T}) = \nabla f \cdot \mathbf{T} + f \nabla \cdot \mathbf{T} \]
Let \(\mathbf{r} = ix + jy + kz \) be the radius vector of magnitude \(r \), from the origin to the point \(x, y, z \). Then

\[
(21) \nabla \cdot \mathbf{r} = 3
\]

\[
(22) \nabla \times \mathbf{r} = 0
\]

\[
(23) \nabla r = \mathbf{r}/r
\]

\[
(24) \nabla (1/r) = -\mathbf{r}/r^3
\]

\[
(25) \nabla \cdot (\mathbf{r}/r^3) = 4\pi\delta(r)
\]

\[
(26) \nabla \mathbf{r} = I
\]

If \(V \) is a volume enclosed by a surface \(S \) and \(d\mathbf{S} = n\,dS \), where \(n \) is the unit normal outward from \(V \),

\[
(27) \int_V dV \nabla f = \int_S d\mathbf{S} f
\]

\[
(28) \int_V dV \nabla \cdot \mathbf{A} = \int_S d\mathbf{S} \cdot \mathbf{A}
\]

\[
(29) \int_V dV \nabla \cdot \mathbf{T} = \int_S d\mathbf{S} \cdot \mathbf{T}
\]

\[
(30) \int_V dV \nabla \times \mathbf{A} = \int_S d\mathbf{S} \times \mathbf{A}
\]

\[
(31) \int_V dV (f \nabla^2 g - g \nabla^2 f) = \int_S d\mathbf{S} \cdot (f \nabla g - g \nabla f)
\]

\[
(32) \int_V dV (\mathbf{A} \cdot \nabla \times \nabla \times \mathbf{B} - \mathbf{B} \cdot \nabla \times \nabla \times \mathbf{A})
\]

\[
= \int_S d\mathbf{S} \cdot (\mathbf{B} \times \nabla \times \mathbf{A} - \mathbf{A} \times \nabla \times \mathbf{B})
\]

If \(S \) is an open surface bounded by the contour \(C \), of which the line element is \(dl \),

\[
(33) \int_S d\mathbf{S} \times \nabla f = \oint_C dl f
\]
\begin{align}
(34) \quad \int_S dS \cdot \nabla \times A &= \oint_C dl \cdot A \\
(35) \quad \int_S (dS \times \nabla) \times A &= \oint_C dl \times A \\
(36) \quad \int_S dS \cdot (\nabla f \times \nabla g) &= \oint_C f dg = -\oint_C g df
\end{align}

DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES

Cylindrical Coordinates

Divergence

\[\nabla \cdot A = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} \]

Gradient

\[(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_\phi = \frac{1}{r} \frac{\partial f}{\partial \phi}; \quad (\nabla f)_z = \frac{\partial f}{\partial z} \]

Curl

\[(\nabla \times A)_r = \frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \]

\[(\nabla \times A)_\phi = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \]

\[(\nabla \times A)_z = \frac{1}{r} \frac{\partial}{\partial r} (rA_\phi) - \frac{1}{r} \frac{\partial A_r}{\partial \phi} \]

Laplacian

\[\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2} \]
Laplacian of a vector

\[
(\nabla^2 A)_r = \nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_\phi}{\partial \phi} - \frac{A_r}{r^2} \\
(\nabla^2 A)_\phi = \nabla^2 A_\phi + \frac{2}{r^2} \frac{\partial A_r}{\partial \phi} - \frac{A_\phi}{r^2} \\
(\nabla^2 A)_z = \nabla^2 A_z
\]

Components of \((\mathbf{A} \cdot \nabla)\mathbf{B}\)

\[
(\mathbf{A} \cdot \nabla \mathbf{B})_r = A_r \frac{\partial B_r}{\partial r} + A_\phi \frac{\partial B_r}{\partial \phi} + A_z \frac{\partial B_r}{\partial z} - \frac{A_\phi B_r}{r} \\
(\mathbf{A} \cdot \nabla \mathbf{B})_\phi = A_r \frac{\partial B_\phi}{\partial r} + A_\phi \frac{\partial B_\phi}{\partial \phi} + A_z \frac{\partial B_\phi}{\partial z} + \frac{A_\phi B_r}{r} \\
(\mathbf{A} \cdot \nabla \mathbf{B})_z = A_r \frac{\partial B_z}{\partial r} + A_\phi \frac{\partial B_z}{\partial \phi} + A_z \frac{\partial B_z}{\partial z}
\]

Divergence of a tensor

\[
(\nabla \cdot T)_r = \frac{1}{r} \frac{\partial}{\partial r} (r T_{rr}) + \frac{1}{r} \frac{\partial T_{r\phi}}{\partial \phi} + \frac{\partial T_{rz}}{\partial z} - \frac{T_{\phi\phi}}{r} \\
(\nabla \cdot T)_\phi = \frac{1}{r} \frac{\partial}{\partial r} (r T_{r\phi}) + \frac{1}{r} \frac{\partial T_{\phi\phi}}{\partial \phi} + \frac{\partial T_{z\phi}}{\partial z} + \frac{T_{\phi r}}{r} \\
(\nabla \cdot T)_z = \frac{1}{r} \frac{\partial}{\partial r} (r T_{rz}) + \frac{1}{r} \frac{\partial T_{\phi z}}{\partial \phi} + \frac{\partial T_{zz}}{\partial z}
\]
Spherical Coordinates

Divergence
\[\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi} \]

Gradient
\[(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_\theta = \frac{1}{r} \frac{\partial f}{\partial \theta}; \quad (\nabla f)_\phi = \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \]

Curl
\[(\nabla \times \mathbf{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\phi) - \frac{1}{r} \frac{\partial}{\partial \phi} (r A_\phi) \]
\[(\nabla \times \mathbf{A})_\theta = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (r A_\phi) \]
\[(\nabla \times \mathbf{A})_\phi = \frac{1}{r} \frac{\partial}{\partial r} (r A_\theta) - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \]

Laplacian
\[\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \]

Laplacian of a vector
\[(\nabla^2 \mathbf{A})_r = \nabla^2 A_r - \frac{2 A_r}{r^2} - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2 \cot \theta A_\theta}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial A_\phi}{\partial \phi} \]
\[(\nabla^2 \mathbf{A})_\theta = \nabla^2 A_\theta + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - A_\theta \frac{r^2}{r^2 \sin^2 \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\phi}{\partial \phi} \]
\[(\nabla^2 \mathbf{A})_\phi = \nabla^2 A_\phi - \frac{A_\phi}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\theta}{\partial \phi} \]
Components of \((\mathbf{A} \cdot \nabla)\mathbf{B}\)

\[
(A \cdot \nabla)B_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_r}{\partial \phi} - \frac{A_\theta B_\theta + A_\phi B_\phi}{r}
\]

\[
(A \cdot \nabla)B_\theta = A_r \frac{\partial B_\theta}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\theta}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_\theta}{\partial \phi} + \frac{A_\theta B_r}{r} - \frac{\cot \theta A_\phi B_\phi}{r}
\]

\[
(A \cdot \nabla)B_\phi = A_r \frac{\partial B_\phi}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_\phi}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_\phi}{\partial \phi} + \frac{A_\phi B_r}{r} + \frac{\cot \theta A_\phi B_\theta}{r}
\]

Divergence of a tensor

\[
(\nabla \cdot T)_r = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{r\theta})
\]

\[
+ \frac{1}{r \sin \theta} \frac{\partial T_{\phi r}}{\partial \phi} = \frac{T_{\theta \theta} + T_{\phi \phi}}{r}
\]

\[
(\nabla \cdot T)_\theta = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta \theta})
\]

\[
+ \frac{1}{r \sin \theta} \frac{\partial T_{\phi \theta}}{\partial \phi} + \frac{T_{\theta r}}{r} - \frac{\cot \theta T_{\phi \phi}}{r}
\]

\[
(\nabla \cdot T)_\phi = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta \phi})
\]

\[
+ \frac{1}{r \sin \theta} \frac{\partial T_{\phi \phi}}{\partial \phi} + \frac{T_{\phi r}}{r} + \frac{\cot \theta T_{\phi \theta}}{r}
\]
DIMENSIONS AND UNITS

To get the value of a quantity in Gaussian units, multiply the value expressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light \(c = 2.9979 \times 10^{10} \text{ cm/sec} \approx 3 \times 10^{10} \text{ cm/sec} \).

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Symbol</th>
<th>Dimensions</th>
<th>SI Units</th>
<th>Conversion Factor</th>
<th>Gaussian Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>(C)</td>
<td>(\frac{t^2q^2}{ml^2})</td>
<td>(l)</td>
<td>farad</td>
<td>(9 \times 10^{11}) cm</td>
</tr>
<tr>
<td>Charge</td>
<td>(q)</td>
<td>(\frac{q}{t})</td>
<td>(\frac{m^{1/2} l^{3/2}}{t})</td>
<td>coulomb</td>
<td>(3 \times 10^{9}) statcoulomb</td>
</tr>
<tr>
<td>Charge density</td>
<td>(\rho)</td>
<td>(\frac{q}{l^3})</td>
<td>(\frac{m^{1/2}}{l^{3/2}t})</td>
<td>coulomb</td>
<td>(3 \times 10^{3}) statcoulomb/cm³</td>
</tr>
<tr>
<td>Conductance</td>
<td>(\sigma)</td>
<td>(\frac{tq^2}{ml^2})</td>
<td>(\frac{l}{t})</td>
<td>siemens</td>
<td>(9 \times 10^{11}) cm/sec</td>
</tr>
<tr>
<td>Conductivity</td>
<td>(\sigma)</td>
<td>(\frac{tq^2}{ml^3})</td>
<td>(\frac{1}{t})</td>
<td>siemens</td>
<td>(9 \times 10^{9}) sec⁻¹</td>
</tr>
<tr>
<td>Current</td>
<td>(I, i)</td>
<td>(\frac{q}{t})</td>
<td>(\frac{m^{1/2} l^{3/2}}{t^2})</td>
<td>ampere</td>
<td>(3 \times 10^{9}) statampere</td>
</tr>
<tr>
<td>Current density</td>
<td>(J, j)</td>
<td>(\frac{q}{l^2t})</td>
<td>(\frac{m^{1/2}}{l^{1/2}t^2})</td>
<td>ampere</td>
<td>(3 \times 10^{5}) statampere/cm²</td>
</tr>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>(\frac{m}{l^3})</td>
<td>(\frac{kg}{m^3})</td>
<td>(10^{-3})</td>
<td>(g/cm^3)</td>
</tr>
<tr>
<td>Displacement</td>
<td>(D)</td>
<td>(\frac{q}{l^2})</td>
<td>(\frac{m^{1/2}}{l^{1/2}t})</td>
<td>coulomb</td>
<td>(12\pi \times 10^{5}) statcoulomb/cm²</td>
</tr>
<tr>
<td>Electric field</td>
<td>(E)</td>
<td>(\frac{ml}{t^2q})</td>
<td>(\frac{m^{1/2}}{l^{1/2}t})</td>
<td>volt/m</td>
<td>(\frac{1}{3} \times 10^{-4}) statvolt/cm</td>
</tr>
<tr>
<td>Electromotance</td>
<td>(\mathcal{E}, \text{Emf})</td>
<td>(\frac{ml^2}{t^2q})</td>
<td>(\frac{m^{1/2} l^{1/2}}{t})</td>
<td>volt</td>
<td>(\frac{1}{3} \times 10^{-2}) statvolt</td>
</tr>
<tr>
<td>Energy</td>
<td>(U, W)</td>
<td>(\frac{ml^2}{t^2})</td>
<td>(\frac{m}{l^2})</td>
<td>joule/m³</td>
<td>(10^7) erg</td>
</tr>
<tr>
<td>Energy density</td>
<td>(w, \epsilon)</td>
<td>(\frac{m}{lt^2})</td>
<td>(\frac{m}{l^2})</td>
<td>joule/m³</td>
<td>(10) erg/cm³</td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>Dimensions</td>
<td>SI</td>
<td>Gaussian</td>
<td>SI Units</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>------------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>ml/t²</td>
<td>ml</td>
<td>ml/t²</td>
<td>newton</td>
</tr>
<tr>
<td>Frequency</td>
<td>f, ν</td>
<td>1/t</td>
<td>1/t</td>
<td>1/t</td>
<td>hertz</td>
</tr>
<tr>
<td>Impedance</td>
<td>Z</td>
<td>ml²/tq²</td>
<td>ml</td>
<td>ml²/l</td>
<td>ohm</td>
</tr>
<tr>
<td>Inductance</td>
<td>L</td>
<td>ml²/q²</td>
<td>ml</td>
<td>ml²/l</td>
<td>henry</td>
</tr>
<tr>
<td>Length</td>
<td>l</td>
<td>l</td>
<td>l</td>
<td>l</td>
<td>meter (m)</td>
</tr>
<tr>
<td>Magnetic intensity</td>
<td>H</td>
<td>q/l²t</td>
<td>ml</td>
<td>ml²/l²t²</td>
<td>ampere-turn/m</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>Φ</td>
<td>ml²/tq</td>
<td>ml</td>
<td>ml¹/2l¹/₂</td>
<td>weber</td>
</tr>
<tr>
<td>Magnetic induction</td>
<td>B</td>
<td>m²/q²</td>
<td>ml</td>
<td>ml¹/₂l⁵/₂</td>
<td>tesla</td>
</tr>
<tr>
<td>Magnetic moment</td>
<td>m, μ</td>
<td>l²q/t</td>
<td>ml</td>
<td>ml¹/₂l⁵/₂</td>
<td>ampere-m²</td>
</tr>
<tr>
<td>Magnetization</td>
<td>M</td>
<td>q/l²t</td>
<td>ml</td>
<td>ml¹/₂l¹/₂</td>
<td>ampere-turn/m</td>
</tr>
<tr>
<td>MAGNETOMOTANCE</td>
<td>\mathcal{M}, Mmf</td>
<td>q/t</td>
<td>ml</td>
<td>ml¹/₂l¹/₂</td>
<td>ampere-turn</td>
</tr>
<tr>
<td>Mass</td>
<td>m, M</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>Momentum</td>
<td>p, P</td>
<td>ml/t²</td>
<td>ml</td>
<td>ml/t²</td>
<td>kg–m/s</td>
</tr>
<tr>
<td>Momentum density</td>
<td>ρ</td>
<td>m/t²</td>
<td>m</td>
<td>m/t²</td>
<td>kg/m²–s</td>
</tr>
<tr>
<td>Permeability</td>
<td>μ</td>
<td>ml/q²</td>
<td>1</td>
<td></td>
<td>henry/m</td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>SI Units</td>
<td>Gaussian Units</td>
<td>Conversion Factor</td>
<td>Gaussian Units</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Permittivity</td>
<td>ϵ</td>
<td>$\frac{t^2 q^2}{m l^3}$</td>
<td>1 farad/m</td>
<td>$36\pi \times 10^9$</td>
<td>—</td>
</tr>
<tr>
<td>Polarization</td>
<td>P</td>
<td>$\frac{q}{l^2}$</td>
<td>$m^{1/2} l^{1/2}$</td>
<td>3×10^5</td>
<td>statcoulomb/cm²</td>
</tr>
<tr>
<td>Potential</td>
<td>V, ϕ</td>
<td>$\frac{m l^2}{t^2 q}$</td>
<td>$m^{1/2} l^{1/2}$</td>
<td>$\frac{1}{3} \times 10^{-2}$</td>
<td>statvolt</td>
</tr>
<tr>
<td>Power</td>
<td>P</td>
<td>$\frac{m l^2}{t^3}$</td>
<td>watt</td>
<td>10^7</td>
<td>erg/sec</td>
</tr>
<tr>
<td>Power density</td>
<td>—</td>
<td>$\frac{m}{l t^3}$</td>
<td>watt/m³</td>
<td>10</td>
<td>erg/cm³–sec</td>
</tr>
<tr>
<td>Pressure</td>
<td>p, P</td>
<td>$\frac{m}{l t^2}$</td>
<td>pascal</td>
<td>10</td>
<td>dyne/cm²</td>
</tr>
<tr>
<td>Reluctance</td>
<td>\mathcal{R}</td>
<td>$\frac{q^2}{m l^2}$</td>
<td>$\frac{1}{l}$</td>
<td>$4\pi \times 10^{-9}$</td>
<td>cm⁻¹</td>
</tr>
<tr>
<td>Resistance</td>
<td>R</td>
<td>$\frac{m l^2}{t q^2}$</td>
<td>$\frac{l}{t}$</td>
<td>$\frac{1}{9} \times 10^{-11}$</td>
<td>sec/cm</td>
</tr>
<tr>
<td>Resistivity</td>
<td>η, ρ</td>
<td>$\frac{m l^3}{t q^2}$</td>
<td>$\frac{1}{t}$</td>
<td>$\frac{1}{9} \times 10^{-9}$</td>
<td>sec</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>κ, k</td>
<td>$\frac{m l}{t^3}$</td>
<td>watt/m–deg (K)</td>
<td>10^5</td>
<td>erg/cm–sec–deg (K)</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>t</td>
<td>second (s)</td>
<td>1</td>
<td>second (sec)</td>
</tr>
<tr>
<td>Vector potential</td>
<td>A</td>
<td>$\frac{m l^{1/2} l^{1/2}}{t}$</td>
<td>weber/m</td>
<td>10^6</td>
<td>gauss–cm</td>
</tr>
<tr>
<td>Velocity</td>
<td>\mathbf{v}</td>
<td>$\frac{l}{t}$</td>
<td>m/s</td>
<td>10^2</td>
<td>cm/sec</td>
</tr>
<tr>
<td>Viscosity</td>
<td>η, μ</td>
<td>$\frac{m}{l t}$</td>
<td>kg/m–s</td>
<td>10</td>
<td>poise</td>
</tr>
<tr>
<td>Vorticity</td>
<td>ζ</td>
<td>$\frac{1}{l}$</td>
<td>s⁻¹</td>
<td>1</td>
<td>sec⁻¹</td>
</tr>
<tr>
<td>Work</td>
<td>W</td>
<td>$\frac{m l^2}{t^2}$</td>
<td>joule</td>
<td>10^7</td>
<td>erg</td>
</tr>
</tbody>
</table>
INTERNATIONAL SYSTEM (SI) NOMENCLATURE

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name of Unit</th>
<th>Symbol</th>
<th>Physical Quantity</th>
<th>Name of Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>*length</td>
<td>meter</td>
<td>m</td>
<td>electric potential</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>*mass</td>
<td>kilogram</td>
<td>kg</td>
<td>electric resistance</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>*time</td>
<td>second</td>
<td>s</td>
<td>electric conductance</td>
<td>siemens</td>
<td>S</td>
</tr>
<tr>
<td>*current</td>
<td>ampere</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*temperature</td>
<td>kelvin</td>
<td>K</td>
<td>electric capacitance</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>*amount of substance</td>
<td>mole</td>
<td>mol</td>
<td>magnetic flux</td>
<td>weber</td>
<td>Wb</td>
</tr>
<tr>
<td>*luminous intensity</td>
<td>candela</td>
<td>cd</td>
<td>magnetic inductance</td>
<td>henry</td>
<td>H</td>
</tr>
<tr>
<td>† plane angle</td>
<td>radian</td>
<td>rad</td>
<td>magnetic intensity</td>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>† solid angle</td>
<td>steradian</td>
<td>sr</td>
<td>luminous flux</td>
<td>lumen</td>
<td>lm</td>
</tr>
<tr>
<td>frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>illuminance</td>
<td>lux</td>
<td>lx</td>
</tr>
<tr>
<td>energy</td>
<td>joule</td>
<td>J</td>
<td>activity (of a radioactive source)</td>
<td>becquerel</td>
<td>Bq</td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N</td>
<td>absorbed dose (of ionizing radiation)</td>
<td>gray</td>
<td>Gy</td>
</tr>
<tr>
<td>pressure</td>
<td>pascal</td>
<td>Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power</td>
<td>watt</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electric charge</td>
<td>coulomb</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SI base unit †Supplementary unit

METRIC PREFIXES

<table>
<thead>
<tr>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹</td>
<td>deci</td>
<td>d</td>
<td>10</td>
<td>deca</td>
<td>da</td>
</tr>
<tr>
<td>10⁻²</td>
<td>centi</td>
<td>c</td>
<td>10²</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10⁻³</td>
<td>milli</td>
<td>m</td>
<td>10³</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>micro</td>
<td>µ</td>
<td>10⁶</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10⁻⁹</td>
<td>nano</td>
<td>n</td>
<td>10⁹</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>pico</td>
<td>p</td>
<td>10¹²</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>femto</td>
<td>f</td>
<td>10¹⁵</td>
<td>peta</td>
<td>P</td>
</tr>
<tr>
<td>10⁻¹⁸</td>
<td>atto</td>
<td>a</td>
<td>10¹⁸</td>
<td>exa</td>
<td>E</td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>Value</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k</td>
<td>1.3807×10^{-23}</td>
<td>J K$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary charge</td>
<td>e</td>
<td>1.6022×10^{-19}</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron mass</td>
<td>m_e</td>
<td>9.1094×10^{-31}</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton mass</td>
<td>m_p</td>
<td>1.6726×10^{-27}</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.6726×10^{-11}</td>
<td>m3s$^{-2}$kg$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planck constant</td>
<td>h</td>
<td>6.6261×10^{-34}</td>
<td>J s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of light in vacuum</td>
<td>c</td>
<td>2.9979×10^8</td>
<td>m s$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>ε_0</td>
<td>8.8542×10^{-12}</td>
<td>F m$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability of free space</td>
<td>μ_0</td>
<td>$4 \pi \times 10^{-7}$</td>
<td>H m$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton/electron mass ratio</td>
<td>m_p/m_e</td>
<td>1.8362×10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron charge/mass ratio</td>
<td>e/m_e</td>
<td>1.7588×10^{11}</td>
<td>C kg$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rydberg constant</td>
<td>R_∞</td>
<td>1.0974×10^7</td>
<td>m$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bohr radius</td>
<td>a_0</td>
<td>5.2918×10^{-11}</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic cross section</td>
<td>πa_0^2</td>
<td>8.7974×10^{-21}</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical electron radius</td>
<td>r_e</td>
<td>2.8179×10^{-15}</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomson cross section</td>
<td>$(8\pi/3)r_e^2$</td>
<td>6.6525×10^{-29}</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compton wavelength of electron</td>
<td>$h/m_e c$</td>
<td>2.4263×10^{-12}</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine-structure constant</td>
<td>$\alpha = e^2 / 2 \varepsilon_0 hc$</td>
<td>7.2972×10^{-3}</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First radiation constant</td>
<td>α^{-1}</td>
<td>137.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second radiation constant</td>
<td>$c_1 = 2\pi hc^2$</td>
<td>3.7418×10^{-16}</td>
<td>W m2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>$c_2 = hc/k$</td>
<td>1.4388×10^{-2}</td>
<td>m K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>5.6705×10^{-8}</td>
<td>W m$^{-2}$K$^{-4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>Value</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength associated with 1 eV</td>
<td>$\lambda_0 = hc/e$</td>
<td>1.2398×10^{-6}</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency associated with 1 eV</td>
<td>$\nu_0 = e/h$</td>
<td>2.4180×10^{14}</td>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave number associated with 1 eV</td>
<td>$k_0 = e/hc$</td>
<td>8.0655×10^5</td>
<td>m$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 eV</td>
<td>$h\nu_0$</td>
<td>1.6022×10^{-19}</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 m$^{-1}$</td>
<td>hc</td>
<td>1.9864×10^{-25}</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 Rydberg</td>
<td>$me^3/8\epsilon_0^2h^2$</td>
<td>13.606</td>
<td>eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 Kelvin</td>
<td>k/e</td>
<td>8.6174×10^{-5}</td>
<td>eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature associated with 1 eV</td>
<td>e/k</td>
<td>1.1604×10^4</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avogadro number</td>
<td>N_A</td>
<td>6.0221×10^{23}</td>
<td>mol$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faraday constant</td>
<td>$F = N_Ae$</td>
<td>9.6485×10^4</td>
<td>C mol$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = N_Ak$</td>
<td>8.3145</td>
<td>J K$^{-1}$ mol$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loschmidt’s number (no. density at STP)</td>
<td>n_0</td>
<td>2.6868×10^{25}</td>
<td>m$^{-3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic mass unit</td>
<td>m_u</td>
<td>1.6605×10^{-27}</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard temperature</td>
<td>T_0</td>
<td>273.15</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>$p_0 = n_0kT_0$</td>
<td>1.0133×10^5</td>
<td>Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure of 1 mm Hg (1 torr)</td>
<td></td>
<td>1.3332×10^2</td>
<td>Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar volume at STP</td>
<td>$V_0 = RT_0/p_0$</td>
<td>2.2414×10^{-2}</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar weight of air calorie (cal)</td>
<td>M_{air}</td>
<td>2.8971×10^{-2}</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>9.8067</td>
<td>m s$^{-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>Value</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k</td>
<td>1.3807×10^{-16}</td>
<td>erg/deg (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary charge</td>
<td>e</td>
<td>4.8032×10^{-10}</td>
<td>statcoulomb (statcoul)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron mass</td>
<td>m_e</td>
<td>9.1094×10^{-28}</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton mass</td>
<td>m_p</td>
<td>1.6726×10^{-24}</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.6726×10^{-8}</td>
<td>dyne-cm2/g2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planck constant</td>
<td>h</td>
<td>6.6261×10^{-27}</td>
<td>erg-sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planck constant</td>
<td>$h = h/2\pi$</td>
<td>1.0546×10^{-27}</td>
<td>erg-sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of light in vacuum</td>
<td>c</td>
<td>2.9979×10^{10}</td>
<td>cm/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton/electron mass ratio</td>
<td>m_p/m_e</td>
<td>1.8362×10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron charge/mass ratio</td>
<td>e/m_e</td>
<td>5.2728×10^{17}</td>
<td>statcoul/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rydberg constant</td>
<td>$R_\infty = \frac{2\pi^2m_e^4}{ch^3}$</td>
<td>1.0974×10^5</td>
<td>cm$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bohr radius</td>
<td>$a_0 = \frac{h^2}{me^2}$</td>
<td>5.2918×10^{-9}</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic cross section</td>
<td>πa_0^2</td>
<td>8.7974×10^{-17}</td>
<td>cm2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical electron radius</td>
<td>$r_e = \frac{e^2}{mc^2}$</td>
<td>2.8179×10^{-13}</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomson cross section</td>
<td>$\frac{h}{m_e c}$</td>
<td>6.6525×10^{-25}</td>
<td>cm2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compton wavelength of electron</td>
<td>$\frac{h}{m_e c}$</td>
<td>3.8616×10^{-11}</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine-structure constant</td>
<td>$\alpha = \frac{e^2}{hc}$</td>
<td>7.2972×10^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine-structure constant</td>
<td>α^{-1}</td>
<td>137.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First radiation constant</td>
<td>$c_1 = 2\pi hc^2$</td>
<td>3.7418×10^{-5}</td>
<td>erg-cm2/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second radiation constant</td>
<td>$c_2 = hc/k$</td>
<td>1.4388</td>
<td>cm-deg (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>σ</td>
<td>5.6705×10^{-5}</td>
<td>erg/cm2/sec-deg4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength associated with 1 eV</td>
<td>λ_0</td>
<td>1.2398×10^{-4}</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Quantity</td>
<td>Symbol</td>
<td>Value</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency associated with 1 eV</td>
<td>ν_0</td>
<td>2.4180×10^{14}</td>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave number associated with 1 eV</td>
<td>k_0</td>
<td>8.0655×10^3</td>
<td>cm$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 eV</td>
<td></td>
<td>1.6022×10^{-12}</td>
<td>erg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 cm$^{-1}$</td>
<td></td>
<td>1.9864×10^{-16}</td>
<td>erg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 Rydberg</td>
<td></td>
<td>13.606</td>
<td>eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy associated with 1 deg Kelvin</td>
<td></td>
<td>8.6174×10^{-5}</td>
<td>eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature associated with 1 eV</td>
<td></td>
<td>1.1604×10^4</td>
<td>deg (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avogadro number</td>
<td>N_A</td>
<td>6.0221×10^{23}</td>
<td>mol$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faraday constant</td>
<td>$F = N_Ae$</td>
<td>2.8925×10^{14}</td>
<td>statcoul/mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = N_A k$</td>
<td>8.3145×10^{7}</td>
<td>erg/deg-mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loschmidt’s number (no. density at STP)</td>
<td>n_0</td>
<td>2.6868×10^{19}</td>
<td>cm$^{-3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic mass unit</td>
<td>m_u</td>
<td>1.6605×10^{-24}</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard temperature</td>
<td>T_0</td>
<td>273.15</td>
<td>deg (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>$p_0 = n_0 k T_0$</td>
<td>1.0133×10^6</td>
<td>dyne/cm2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure of 1 mm Hg (1 torr)</td>
<td></td>
<td>1.3332×10^3</td>
<td>dyne/cm2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar volume at STP</td>
<td>$V_0 = RT_0/p_0$</td>
<td>2.2414×10^4</td>
<td>cm3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar weight of air calorie (cal)</td>
<td>M_{air}</td>
<td>28.971</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>980.67</td>
<td>cm/sec2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FORMULA CONVERSION

Here $\alpha = 10^2 \text{ cm m}^{-1}$, $\beta = 10^7 \text{ erg J}^{-1}$, $\epsilon_0 = 8.8542 \times 10^{-12} \text{ F m}^{-1}$, $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$, $c = (\epsilon_0 \mu_0)^{-1/2} = 2.9979 \times 10^8 \text{ m s}^{-1}$, and $\hbar = 1.0546 \times 10^{-34} \text{ J s}$. To derive a dimensionally correct SI formula from one expressed in Gaussian units, substitute for each quantity according to $\bar{Q} = \hat{k}Q$, where \hat{k} is the coefficient in the second column of the table corresponding to Q (overbars denote variables expressed in Gaussian units). Thus, the formula $\bar{a}_0 = \hbar^2 / \bar{m} \bar{e}^2$ for the Bohr radius becomes $a_0 = \epsilon_0 \hbar^2 / (4\pi \alpha \mu \epsilon_0 \bar{c})$, or $a_0 = \epsilon_0 \hbar^2 / \pi m e^2$. To go from SI to natural units in which $\hbar = c = 1$ (distinguished by a circumflex), use $Q = \hat{k}^{-1} \hat{Q}$, where \hat{k} is the coefficient corresponding to Q in the third column. Thus $\hat{a}_0 = 4\pi \epsilon_0 \hbar^2 / [(m \hbar / c)(e^2 \epsilon_0 \mu)] = 4\pi / \bar{m} \bar{e}^2$. (In transforming from SI units, do not substitute for ϵ_0, μ_0, or c.)

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Gaussian Units to SI</th>
<th>Natural Units to SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>$\alpha / 4\pi \epsilon_0$</td>
<td>ϵ_0^{-1}</td>
</tr>
<tr>
<td>Charge</td>
<td>$(\alpha \beta / 4\pi \epsilon_0)^{1/2}$</td>
<td>$(\epsilon_0 \hbar)^{-1/2}$</td>
</tr>
<tr>
<td>Charge density</td>
<td>$(\beta / 4\pi \alpha^5 \epsilon_0)^{1/2}$</td>
<td>$(\epsilon_0 \hbar)^{-1/2}$</td>
</tr>
<tr>
<td>Current</td>
<td>$(\beta / 4\pi \epsilon_0)^{1/2}$</td>
<td>$(\mu_0 / \epsilon_0)^{1/2}$</td>
</tr>
<tr>
<td>Current density</td>
<td>$(\beta / 4\pi \alpha^3 \epsilon_0)^{1/2}$</td>
<td>$(\mu_0 / \epsilon_0)^{1/2}$</td>
</tr>
<tr>
<td>Electric field</td>
<td>$(4\pi \beta \epsilon_0 / \alpha^3)^{1/2}$</td>
<td>$(\epsilon_0 / \epsilon_0)^{1/2}$</td>
</tr>
<tr>
<td>Electric potential</td>
<td>$(4\pi \beta \epsilon_0 / \alpha)^{1/2}$</td>
<td>ϵ_0^{-1}</td>
</tr>
<tr>
<td>Electric conductivity</td>
<td>$(4\pi \epsilon_0 / \alpha)^{-1}$</td>
<td>$(\epsilon_0 \hbar)^{-1}$</td>
</tr>
<tr>
<td>Energy</td>
<td>β</td>
<td>$(\epsilon_0 \hbar)^{-1}$</td>
</tr>
<tr>
<td>Energy density</td>
<td>β / α^3</td>
<td>$(\epsilon_0 \hbar)^{-1}$</td>
</tr>
<tr>
<td>Force</td>
<td>β / α</td>
<td>c^{-1}</td>
</tr>
<tr>
<td>Frequency</td>
<td>1</td>
<td>μ_0^{-1}</td>
</tr>
<tr>
<td>Inductance</td>
<td>$4\pi \epsilon_0 / \alpha$</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>α</td>
<td>$(\mu_0 \epsilon_0)^{-1/2}$</td>
</tr>
<tr>
<td>Magnetic induction</td>
<td>$(4\beta / 4\pi \alpha^3 \mu_0)^{1/2}$</td>
<td>$\epsilon_0 / \epsilon_0^2$</td>
</tr>
<tr>
<td>Magnetic intensity</td>
<td>$(4\pi \mu_0 \beta / \alpha^3)^{1/2}$</td>
<td>$c / (\epsilon_0 \mu_0)^{1/2}$</td>
</tr>
<tr>
<td>Mass</td>
<td>β / α^2</td>
<td>\hbar^{-1}</td>
</tr>
<tr>
<td>Momentum</td>
<td>β / α</td>
<td>$(\epsilon_0 \hbar)^{-1}$</td>
</tr>
<tr>
<td>Power</td>
<td>β</td>
<td>$(\epsilon_0 \hbar)^{-1}$</td>
</tr>
<tr>
<td>Pressure</td>
<td>β / α^3</td>
<td>$c / (\epsilon_0 \mu_0)^{1/2}$</td>
</tr>
<tr>
<td>Resistance</td>
<td>$4\pi \epsilon_0 / \alpha$</td>
<td>c</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>c^{-1}</td>
</tr>
<tr>
<td>Velocity</td>
<td>α</td>
<td></td>
</tr>
</tbody>
</table>
Maxwell's Equations

<table>
<thead>
<tr>
<th>Name or Description</th>
<th>SI</th>
<th>Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraday's law</td>
<td>$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$</td>
<td>$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$</td>
</tr>
<tr>
<td>Ampere’s law</td>
<td>$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$</td>
<td>$\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + \frac{4\pi}{c} \mathbf{J}$</td>
</tr>
<tr>
<td>Poisson equation</td>
<td>$\nabla \cdot \mathbf{D} = \rho$</td>
<td>$\nabla \cdot \mathbf{D} = 4\pi \rho$</td>
</tr>
<tr>
<td>[Absence of magnetic monopoles]</td>
<td>$\nabla \cdot \mathbf{B} = 0$</td>
<td>$\nabla \cdot \mathbf{B} = 0$</td>
</tr>
<tr>
<td>Lorentz force on charge q</td>
<td>$q (\mathbf{E} + \mathbf{v} \times \mathbf{B})$</td>
<td>$q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$</td>
</tr>
<tr>
<td>Constitutive relations</td>
<td>$\mathbf{D} = \varepsilon \mathbf{E}$</td>
<td>$\mathbf{D} = \varepsilon \mathbf{E}$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{B} = \mu \mathbf{H}$</td>
<td>$\mathbf{B} = \mu \mathbf{H}$</td>
</tr>
</tbody>
</table>

In a plasma, $\mu \approx \mu_0 = 4\pi \times 10^{-7}$ H m$^{-1}$ (Gaussian units: $\mu \approx 1$). The permittivity satisfies $\varepsilon \approx \varepsilon_0 = 8.8542 \times 10^{-12}$ F m$^{-1}$ (Gaussian: $\varepsilon \approx 1$) provided that all charge is regarded as free. Using the drift approximation $\mathbf{v}_\perp = \mathbf{E} \times \mathbf{B} / B^2$ to calculate polarization charge density gives rise to a dielectric constant $K \equiv \varepsilon / \varepsilon_0 = 1 + 36\pi \times 10^{-9} \rho / B^2$ (SI) = $1 + 4\pi \rho c^2 / B^2$ (Gaussian), where ρ is the mass density.

The electromagnetic energy in volume V is given by

$$W = \frac{1}{2} \int_V dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D}) \quad \text{(SI)}$$

$$= \frac{1}{8\pi} \int_V dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D}) \quad \text{(Gaussian)}.$$

Poynting’s theorem is

$$\frac{\partial W}{\partial t} + \int_S \mathbf{N} \cdot d\mathbf{S} = -\int_V dV \mathbf{J} \cdot \mathbf{E},$$

where S is the closed surface bounding V and the Poynting vector (energy flux across S) is given by $\mathbf{N} = \mathbf{E} \times \mathbf{H}$ (SI) or $\mathbf{N} = c\mathbf{E} \times \mathbf{H} / 4\pi$ (Gaussian).
ELECTRICITY AND MAGNETISM

In the following, $\epsilon = \text{dielectric permittivity}$, $\mu = \text{permeability of conductor}$, $\mu' = \text{permeability of surrounding medium}$, $\sigma = \text{conductivity}$, $f = \omega/2\pi = \text{radiation frequency}$, $\kappa_m = \mu/\mu_0$ and $\kappa_e = \epsilon/\epsilon_0$. Where subscripts are used, ‘1’ denotes a conducting medium and ‘2’ a propagating (lossless dielectric) medium. All units are SI unless otherwise specified.

- **Permittivity of free space**
 \[\epsilon_0 = 8.8542 \times 10^{-12} \text{ F m}^{-1} \]

- **Permeability of free space**
 \[\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1} \]
 \[= 1.2566 \times 10^{-6} \text{ H m}^{-1} \]

- **Resistance of free space**
 \[R_0 = (\mu_0/\epsilon_0)^{1/2} = 376.73 \Omega \]

- **Capacity of parallel plates of area**
 \[C = \epsilon A/d \]

- **Capacity of concentric cylinders**
 \[C = 2\pi \epsilon l/\ln(b/a) \]

- **Capacity of concentric spheres**
 \[C = 4\pi \epsilon a b/(b - a) \]

- **Self-inductance of wire**
 \[L = \mu l/8\pi \]

- **Mutual inductance of parallel wires**
 \[L = (\mu' l/4\pi) \left[1 + 4 \ln(d/a) \right] \]

- **Inductance of circular loop**
 \[L = b \left\{ \mu' \left[\ln(8b/a) - 2 \right] + \mu/4 \right\} \]

- **Relaxation time in a lossy medium**
 \[\tau = \epsilon/\sigma \]

- **Skin depth in a lossy medium**
 \[\delta = (2/\omega \mu \sigma)^{1/2} = (\pi f \mu \sigma)^{-1/2} \]

- **Wave impedance in a lossy medium**
 \[Z = [\mu/(\epsilon + i\sigma/\omega)]^{1/2} \]

- **Transmission coefficient at conducting surface**
 \[T = 4.22 \times 10^{-4} (f \kappa_m \kappa_e / \sigma)^{1/2} \]

- **Field at distance**
 \[B_\theta = \mu I/2\pi r \text{ tesla} \]
 \[= 0.2I/r \text{ gauss} \text{ (r in cm)} \]

- **Field at distance along axis**
 \[B_z = \mu a^2 I/[2(a^2 + z^2)^{3/2}] \]
ELECTROMAGNETIC FREQUENCY/ WAVELENGTH BANDS

<table>
<thead>
<tr>
<th>Designation</th>
<th>Frequency Range</th>
<th>Wavelength Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>ULF*</td>
<td>30 Hz</td>
<td>30 Hz</td>
</tr>
<tr>
<td>VF*</td>
<td>30 Hz</td>
<td>300 Hz</td>
</tr>
<tr>
<td>ELF</td>
<td>300 Hz</td>
<td>3 kHz</td>
</tr>
<tr>
<td>VLF</td>
<td>3 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>LF</td>
<td>30 kHz</td>
<td>300 kHz</td>
</tr>
<tr>
<td>MF</td>
<td>300 kHz</td>
<td>3 MHz</td>
</tr>
<tr>
<td>HF</td>
<td>3 MHz</td>
<td>30 MHz</td>
</tr>
<tr>
<td>VHF</td>
<td>30 MHz</td>
<td>300 MHz</td>
</tr>
<tr>
<td>UHF</td>
<td>300 MHz</td>
<td>3 GHz</td>
</tr>
<tr>
<td>SHF†</td>
<td>3 GHz</td>
<td>30 GHz</td>
</tr>
<tr>
<td>S</td>
<td>2.6</td>
<td>3.95</td>
</tr>
<tr>
<td>G</td>
<td>3.95</td>
<td>5.85</td>
</tr>
<tr>
<td>J</td>
<td>5.3</td>
<td>8.2</td>
</tr>
<tr>
<td>H</td>
<td>7.05</td>
<td>10.0</td>
</tr>
<tr>
<td>X</td>
<td>8.2</td>
<td>12.4</td>
</tr>
<tr>
<td>M</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td>P</td>
<td>12.4</td>
<td>18.0</td>
</tr>
<tr>
<td>K</td>
<td>18.0</td>
<td>26.5</td>
</tr>
<tr>
<td>R</td>
<td>26.5</td>
<td>40.0</td>
</tr>
<tr>
<td>EHF</td>
<td>30 GHz</td>
<td>300 GHz</td>
</tr>
<tr>
<td>Submillimeter</td>
<td>300 GHz</td>
<td>3 THz</td>
</tr>
<tr>
<td>Infrared</td>
<td>3 THz</td>
<td>430 THz</td>
</tr>
<tr>
<td>Visible</td>
<td>430 THz</td>
<td>750 THz</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>750 THz</td>
<td>30 PHz</td>
</tr>
<tr>
<td>X Ray</td>
<td>30 PHz</td>
<td>3 EHertz</td>
</tr>
<tr>
<td>Gamma Ray</td>
<td>3 EHertz</td>
<td>3 EHz</td>
</tr>
</tbody>
</table>

In spectroscopy the angstrom is sometimes used \((1 \text{Å} = 10^{-8} \text{cm} = 0.1 \text{nm})\).

*The boundary between ULF and VF (voice frequencies) is variously defined.

†The SHF (microwave) band is further subdivided approximately as shown.
AC CIRCUITS

For a resistance R, inductance L, and capacitance C in series with a voltage source $V = V_0 \exp(i\omega t)$ (here $i = \sqrt{-1}$), the current is given by $I = dq/dt$, where q satisfies

$$L \frac{d^2 q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = V.$$

Solutions are $q(t) = q_s + q_t$, $I(t) = I_s + I_t$, where the steady state is $I_s = i\omega q_s = V/Z$ in terms of the impedance $Z = R + i(\omega L - 1/\omega C)$ and $I_t = dq_t/dt$. For initial conditions $q(0) \equiv q_0 = \bar{q}_0 + q_s$, $I(0) \equiv I_0$, the transients can be of three types, depending on $\Delta = R^2 - 4L/C$:

(a) Overdamped, $\Delta > 0$

$$q_t = \frac{I_0 + \gamma+\bar{q}_0}{\gamma_+ - \gamma_-} \exp(-\gamma_- t) - \frac{I_0 + \gamma-\bar{q}_0}{\gamma_+ - \gamma_-} \exp(-\gamma_+ t),$$

$$I_t = \frac{\gamma+(I_0 + \gamma-\bar{q}_0)}{\gamma_+ - \gamma_-} \exp(-\gamma_+ t) - \frac{\gamma-(I_0 + \gamma+\bar{q}_0)}{\gamma_+ - \gamma_-} \exp(-\gamma_- t),$$

where $\gamma_\pm = (R \pm \Delta^{1/2})/2L$;

(b) Critically damped, $\Delta = 0$

$$q_t = [\bar{q}_0 + (I_0 + \gamma R \bar{q}_0)t] \exp(-\gamma_R t),$$

$$I_t = [I_0 - (I_0 + \gamma R \bar{q}_0) \gamma_R t] \exp(-\gamma_R t),$$

where $\gamma_R = R/2L$;

(c) Underdamped, $\Delta < 0$

$$q_t = \left[\frac{\gamma R \bar{q}_0 + I_0}{\omega_1} \sin \omega_1 t + \bar{q}_0 \cos \omega_1 t \right] \exp(-\gamma_R t),$$

$$I_t = \left[I_0 \cos \omega_1 t - \frac{(\omega_1^2 + \gamma R^2) \bar{q}_0 + \gamma R I_0}{\omega_1} \sin(\omega_1 t) \right] \exp(-\gamma_R t),$$

Here $\omega_1 = \omega_0 (1 - R^2 C/4L)^{1/2}$, where $\omega_0 = (LC)^{-1/2}$ is the resonant frequency. At $\omega = \omega_0$, $Z = R$. The quality of the circuit is $Q = \omega_0 L/R$. Instability results when L, R, C are not all of the same sign.
DIMENSIONLESS NUMBERS OF FLUID MECHANICS

<table>
<thead>
<tr>
<th>Name(s)</th>
<th>Symbol</th>
<th>Definition</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfvén, Kármán</td>
<td>Al, Ka</td>
<td>V_A/V</td>
<td>*(Magnetic force/inertial force)$^{1/2}$</td>
</tr>
<tr>
<td>Bond</td>
<td>Bd</td>
<td>$(\rho' - \rho)L^2g/\Sigma$</td>
<td>Gravitational force/surface tension</td>
</tr>
<tr>
<td>Boussinesq</td>
<td>B</td>
<td>$V/(2gR)^{1/2}$</td>
<td>*(Inertial force/gravitational force)$^{1/2}$</td>
</tr>
<tr>
<td>Brinkman</td>
<td>Br</td>
<td>$\mu V^2/k\Delta T$</td>
<td>Viscous heat/conducted heat</td>
</tr>
<tr>
<td>Capillary</td>
<td>Cp</td>
<td>$\mu V/\Sigma$</td>
<td>Viscous force/surface tension</td>
</tr>
<tr>
<td>Carnot</td>
<td>Ca</td>
<td>$(T_2 - T_1)/T_2$</td>
<td>Theoretical Carnot cycle efficiency</td>
</tr>
<tr>
<td>Cauchy, Hooke</td>
<td>Cy, Hk</td>
<td>$\rho V^2/\Gamma = M^2$</td>
<td>Inertial force/compressibility force</td>
</tr>
<tr>
<td>Chandra- sekhar</td>
<td>Ch</td>
<td>$B^2 L^2/\rho \nu \eta$</td>
<td>Magnetic force/dissipative forces</td>
</tr>
<tr>
<td>Clausius</td>
<td>Cl</td>
<td>$LV^3 \rho/k\Delta T$</td>
<td>Kinetic energy flow rate/heat conduction rate</td>
</tr>
<tr>
<td>Cowling</td>
<td>C</td>
<td>$(V_A/V)^2 = Al^2$</td>
<td>Magnetic force/inertial force</td>
</tr>
<tr>
<td>Crispation</td>
<td>Cr</td>
<td>$\mu \kappa/\Sigma L$</td>
<td>Effect of diffusion/effect of surface tension</td>
</tr>
<tr>
<td>Dean</td>
<td>D</td>
<td>$D^{3/2}V/\nu(2r)^{1/2}$</td>
<td>Transverse flow due to curvature/longitudinal flow</td>
</tr>
<tr>
<td>[Drag coefficient]</td>
<td>C_D</td>
<td>$(\rho' - \rho)Lg/\rho'V^2$</td>
<td>Drag force/inertial force</td>
</tr>
<tr>
<td>Eckert</td>
<td>E</td>
<td>$V^2/c_p\Delta T$</td>
<td>Kinetic energy/change in thermal energy</td>
</tr>
<tr>
<td>Ekman</td>
<td>Ek</td>
<td>$(\nu/2\Omega L^2)^{1/2} = (Ro/Re)^{1/2}$</td>
<td>(Viscous force/Coriolis force)$^{1/2}$</td>
</tr>
<tr>
<td>Euler</td>
<td>Eu</td>
<td>$\Delta p/\rho V^2$</td>
<td>Pressure drop due to friction/dynamic pressure</td>
</tr>
<tr>
<td>Froude</td>
<td>Fr</td>
<td>$V/(gL)^{1/2}$</td>
<td>†(Inertial force/gravitational or buoyancy force)$^{1/2}$</td>
</tr>
<tr>
<td>Gay–Lussac</td>
<td>Ga</td>
<td>$1/\beta\Delta T$</td>
<td>Inverse of relative change in volume during heating</td>
</tr>
<tr>
<td>Grashof</td>
<td>Gr</td>
<td>$gL^3\beta\Delta T/\nu^2$</td>
<td>Buoyancy force/viscous force</td>
</tr>
<tr>
<td>[Hall coefficient]</td>
<td>C_H</td>
<td>λ/τ_L</td>
<td>Gyrofrequency/collision frequency</td>
</tr>
</tbody>
</table>

*† Also defined as the inverse (square) of the quantity shown.
<table>
<thead>
<tr>
<th>Name(s)</th>
<th>Symbol</th>
<th>Definition</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartmann</td>
<td>H</td>
<td>$\frac{BL}{(\mu \eta)^{1/2}} = \frac{(Rm \ Re \ C)^{1/2}}{2}$</td>
<td>(Magnetic force/dissipative force)$^{1/2}$</td>
</tr>
<tr>
<td>Knudsen</td>
<td>Kn</td>
<td>λ/L</td>
<td>Hydrodynamic time/collision time</td>
</tr>
<tr>
<td>Lewis</td>
<td>Le</td>
<td>κ/D</td>
<td>*Thermal conduction/molecular diffusion</td>
</tr>
<tr>
<td>Lorentz</td>
<td>Lo</td>
<td>V/c</td>
<td>Magnitude of relativistic effects</td>
</tr>
<tr>
<td>Lundquist</td>
<td>Lu</td>
<td>$\mu_0 L V_A / \eta = \frac{Al Rm}{J \times B}$</td>
<td>J \times B force/resistive magnetic diffusion force</td>
</tr>
<tr>
<td>Mach</td>
<td>M</td>
<td>V/C_S</td>
<td>Magnitude of compressibility effects</td>
</tr>
<tr>
<td>Magnetic Mach</td>
<td>Mm</td>
<td>$V/V_A = Al^{-1}$</td>
<td>(Inertial force/magnetic force)$^{1/2}$</td>
</tr>
<tr>
<td>Magnetic Reynolds</td>
<td>Rm</td>
<td>$\mu_0 LV/\eta$</td>
<td>Flow velocity/magnetic diffusion velocity</td>
</tr>
<tr>
<td>Newton</td>
<td>Nt</td>
<td>$F/\rho L^2 V^2$</td>
<td>Imposed force/inertial force</td>
</tr>
<tr>
<td>Nusselt</td>
<td>N</td>
<td>$\alpha L/k$</td>
<td>Total heat transfer/thermal conduction</td>
</tr>
<tr>
<td>Péclet</td>
<td>Pe</td>
<td>LV/κ</td>
<td>Heat convection/heat conduction</td>
</tr>
<tr>
<td>Poisseuille</td>
<td>Po</td>
<td>$D^2 \Delta p / \mu LV$</td>
<td>Pressure force/viscous force</td>
</tr>
<tr>
<td>Prandtl</td>
<td>Pr</td>
<td>ν/κ</td>
<td>Momentum diffusion/heat diffusion</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>Ra</td>
<td>$g H^3 \beta \Delta T / \nu \kappa$</td>
<td>Buoyancy force/diffusion force</td>
</tr>
<tr>
<td>Reynolds</td>
<td>Re</td>
<td>LV/ν</td>
<td>Inertial force/viscous force</td>
</tr>
<tr>
<td>Richardson</td>
<td>Ri</td>
<td>$(NH/\Delta V)^2$</td>
<td>Buoyancy effects/vertical shear effects</td>
</tr>
<tr>
<td>Rossby</td>
<td>Ro</td>
<td>$V/2\Omega L \sin \Lambda$</td>
<td>Inertial force/Coriolis force</td>
</tr>
<tr>
<td>Schmidt</td>
<td>Sc</td>
<td>ν / D</td>
<td>Momentum diffusion/molecular diffusion</td>
</tr>
<tr>
<td>Stanton</td>
<td>St</td>
<td>$\alpha / \rho c_p V$</td>
<td>Thermal conduction loss/heat capacity</td>
</tr>
<tr>
<td>Stefan</td>
<td>Sf</td>
<td>$\sigma L T^3 / k$</td>
<td>Radiated heat/conducted heat</td>
</tr>
<tr>
<td>Stokes</td>
<td>S</td>
<td>$\nu / L^2 f$</td>
<td>Viscous damping rate/vibration frequency</td>
</tr>
<tr>
<td>Strouhal</td>
<td>Sr</td>
<td>$f L / V$</td>
<td>Vibration speed/flow velocity</td>
</tr>
<tr>
<td>Taylor</td>
<td>Ta</td>
<td>$\frac{(2\Omega L^2 / \nu)^2}{R^{1/2} (\Delta R)^{3/2} \cdot (\Omega / \nu)}$</td>
<td>Centrifugal force/viscous force</td>
</tr>
<tr>
<td>Thring, Boltzmann</td>
<td>Th, Bo</td>
<td>$\rho c_p V / \epsilon \sigma T^3$</td>
<td>Convective heat transport/radiative heat transport</td>
</tr>
<tr>
<td>Weber</td>
<td>W</td>
<td>$\rho L V^2 / \Sigma$</td>
<td>Inertial force/surface tension</td>
</tr>
</tbody>
</table>
Nomenclature:

- B: Magnetic induction
- C_s, c: Speeds of sound, light
- c_p: Specific heat at constant pressure (units m2 s$^{-2}$ K$^{-1}$)
- $D = 2R$: Pipe diameter
- F: Imposed force
- f: Vibration frequency
- g: Gravitational acceleration
- H, L: Vertical, horizontal length scales
- $k = \rho c_p \kappa$: Thermal conductivity (units kg m$^{-1}$ s$^{-2}$)
- $N = (g/H)^{1/2}$: Brunt–Väisälä frequency
- R: Radius of pipe or channel
- r: Radius of curvature of pipe or channel
- r_L: Larmor radius
- T: Temperature
- V: Characteristic flow velocity
- $V_A = B/(\mu_0 \rho)^{1/2}$: Alfvén speed
- α: Newton’s-law heat coefficient, $k \frac{\partial T}{\partial x} = \alpha \Delta T$
- β: Volumetric expansion coefficient, $dV/V = \beta dT$
- Γ: Bulk modulus (units kg m$^{-1}$ s$^{-2}$)
- $\Delta R, \Delta V, \Delta p, \Delta T$: Imposed differences in two radii, velocities, pressures, or temperatures
- ϵ: Surface emissivity
- η: Electrical resistivity
- κ, \mathcal{D}: Thermal, molecular diffusivities (units m2 s$^{-1}$)
- Λ: Latitude of point on earth’s surface
- λ: Collisional mean free path
- $\mu = \rho \nu$: Viscosity
- μ_0: Permeability of free space
- ν: Kinematic viscosity (units m2 s$^{-1}$)
- ρ: Mass density of fluid medium
- ρ': Mass density of bubble, droplet, or moving object
- Σ: Surface tension (units kg s$^{-2}$)
- σ: Stefan–Boltzmann constant
- Ω: Solid-body rotational angular velocity
SHOCKS

At a shock front propagating in a magnetized fluid at an angle θ with respect to the magnetic induction B, the jump conditions are 13,14

1. $\rho U = \bar{\rho} \bar{U} \equiv q$;
2. $\rho U^2 + p + B_{\perp}^2/2\mu = \bar{\rho} \bar{U}^2 + \bar{p} + \bar{B}_{\perp}^2/2\mu$;
3. $\rho UV - B_{\parallel} B_{\perp}/\mu = \bar{\rho} \bar{U} \bar{V} - \bar{B}_{\parallel} \bar{B}_{\perp}/\mu$;
4. $B_{\parallel} = \bar{B}_{\parallel}$;
5. $UB_{\perp} - VB_{\parallel} = \bar{U} \bar{B}_{\perp} - \bar{V} \bar{B}_{\parallel}$;
6. $\frac{1}{2}(U^2 + V^2) + w + (UB_{\perp} - VB_{\parallel})/\mu \rho U$
 \[= \frac{1}{2}(\bar{U}^2 + \bar{V}^2) + \bar{w} + (\bar{U} \bar{B}_{\perp} - \bar{V} \bar{B}_{\parallel})/\mu \bar{\rho} \bar{U}.\]

Here U and V are components of the fluid velocity normal and tangential to the front in the shock frame; $\rho = 1/\upsilon$ is the mass density; p is the pressure; $B_{\perp} = B \sin \theta$, $B_{\parallel} = B \cos \theta$; μ is the magnetic permeability ($\mu = 4\pi$ in cgs units); and the specific enthalpy is $w = e + pv$, where the specific internal energy e satisfies $de = Tds - pd\upsilon$ in terms of the temperature T and the specific entropy s. Quantities in the region behind (downstream from) the front are distinguished by a bar. If $B = 0$, then 15

7. $U - \bar{U} = [(\bar{p} - p)(\upsilon - \bar{\upsilon})]^{1/2}$;
8. $(\bar{p} - p)(\upsilon - \bar{\upsilon})^{-1} = q^2$;
9. $\bar{w} - w = \frac{1}{2}(\bar{p} - p)(\upsilon + \bar{\upsilon})$;
10. $\bar{e} - e = \frac{1}{2}(\bar{p} + p)(\upsilon - \bar{\upsilon})$.

In what follows we assume that the fluid is a perfect gas with adiabatic index $\gamma = 1 + 2/n$, where n is the number of degrees of freedom. Then $p = \rho RT/m$, where R is the universal gas constant and m is the molar weight; the sound speed is given by $C_s^2 = (\partial p/\partial \rho)_s = \gamma pv$; and $w = \gamma e = \gamma pv/(\gamma - 1)$. For a general oblique shock in a perfect gas the quantity $X = r^{-1}(U/V_A)^2$ satisfies 14

11. $(X - \beta/\alpha)(X - \cos^2 \theta)^2 = X \sin^2 \theta \left\{[1 + (r - 1)/2\alpha] X - \cos^2 \theta \right\}$, where $r = \bar{\rho}/\rho$, $\alpha = \frac{1}{2} [\gamma + 1 - (\gamma - 1)r]$, and $\beta = C_s^2/V_A^2 = 4\pi \gamma p/B^2$.

The density ratio is bounded by

12. $1 < r < (\gamma + 1)/(\gamma - 1)$.

If the shock is normal to B (i.e., if $\theta = \pi/2$), then

13. $U^2 = (r/\alpha) \left\{C_s^2 + V_A^2 [1 + (1 - \gamma/2)(r - 1)] \right\}$;
14. $U/\bar{U} = \bar{B}/B = r$;
(15) $\bar{V} = V$;

(16) $\bar{p} = p + (1 - r^{-1})\rho U^2 + (1 - r^2)B^2/2\mu$.

If $\theta = 0$, there are two possibilities: switch-on shocks, which require $\beta < 1$ and for which

(17) $U^2 = rV_A^2$;

(18) $\bar{U} = V_A^2/U$;

(19) $\bar{B}_\perp^2 = 2B_\parallel^2(r - 1)(\alpha - \beta)$;

(20) $\bar{V} = \bar{U}\bar{B}_\perp/B_\parallel$;

(21) $\bar{p} = p + \rho U^2(1 - \alpha + \beta)(1 - r^{-1})$,

and acoustic (hydrodynamic) shocks, for which

(22) $U^2 = (r/\alpha)C_s^2$;

(23) $\bar{U} = U/r$;

(24) $\bar{V} = \bar{B}_\perp = 0$;

(25) $\bar{p} = p + \rho U^2(1 - r^{-1})$.

For acoustic shocks the specific volume and pressure are related by

(26) $\bar{\nu}/\nu = [(\gamma + 1)p + (\gamma - 1)\bar{p}] / [(\gamma - 1)p + (\gamma + 1)\bar{p}]$.

In terms of the upstream Mach number $M = U/C_s$,

(27) $\bar{\rho}/\rho = \nu/\bar{\nu} = U/\bar{U} = (\gamma + 1)M^2 / [(\gamma - 1)M^2 + 2]$;

(28) $\bar{p}/p = (2\gamma M^2 - \gamma + 1) / (\gamma + 1)$;

(29) $T/T = [(\gamma - 1)M^2 + 2](2\gamma M^2 - \gamma + 1) / (\gamma + 1)^2 M^2$;

(30) $M^2 = [(\gamma - 1)M^2 + 2] / [2\gamma M^2 - \gamma + 1]$.

The entropy change across the shock is

(31) $\Delta s \equiv \bar{s} - s = c_v \ln[(\bar{p}/p)(\rho/\bar{\rho})^{\gamma}]$,

where $c_v = R / (\gamma - 1)m$ is the specific heat at constant volume; here R is the gas constant. In the weak-shock limit ($M \to 1$),

(32) $\Delta s \to c_v \frac{2\gamma(\gamma - 1)}{3(\gamma + 1)} (M^2 - 1)^3 \approx \frac{16\gamma R}{3(\gamma + 1)m} (M - 1)^3$.

The radius at time t of a strong spherical blast wave resulting from the explosive release of energy E in a medium with uniform density ρ is

(33) $R_S = C_0(ET^2/\rho)^{1/5}$,

where C_0 is a constant depending on γ. For $\gamma = 7/5$, $C_0 = 1.033$.

27
FUNDAMENTAL PLASMA PARAMETERS

All quantities are in Gaussian cgs units except temperature \((T, T_e, T_i)\) expressed in eV and ion mass \((m_i)\) expressed in units of the proton mass, \(\mu = m_i/m_p\); \(Z\) is charge state; \(k\) is Boltzmann’s constant; \(K\) is wavenumber; \(\gamma\) is the adiabatic index; \(\ln \Lambda\) is the Coulomb logarithm.

Frequencies

- **electron gyrofrequency**
 \[f_{ce} = \omega_{ce}/2\pi = 2.80 \times 10^6 B \text{ Hz} \]
 \[\omega_{ce} = eB/m_e c = 1.76 \times 10^7 B \text{ rad/sec} \]

- **ion gyrofrequency**
 \[f_{ci} = \omega_{ci}/2\pi = 1.52 \times 10^3 Z\mu^{-1} B \text{ Hz} \]
 \[\omega_{ci} = ZeB/m_i c = 9.58 \times 10^3 Z\mu^{-1} B \text{ rad/sec} \]

- **electron plasma frequency**
 \[f_{pe} = \omega_{pe}/2\pi = 8.98 \times 10^3 n_e^{1/2} \text{ Hz} \]
 \[\omega_{pe} = (4\pi n_e e^2/m_e)^{1/2} \]
 \[= 5.64 \times 10^4 n_e^{1/2} \text{ rad/sec} \]

- **ion plasma frequency**
 \[f_{pi} = \omega_{pi}/2\pi \]
 \[= 2.10 \times 10^2 Z\mu^{-1/2} n_i^{1/2} \text{ Hz} \]
 \[\omega_{pi} = (4\pi n_i Z^2 e^2/m_i)^{1/2} \]
 \[= 1.32 \times 10^3 Z\mu^{-1/2} n_i^{1/2} \text{ rad/sec} \]

- **electron trapping rate**
 \[\nu_{Te} = (eKE/m_e)^{1/2} \]
 \[= 7.26 \times 10^8 K^{1/2} E^{1/2} \text{ sec}^{-1} \]

- **ion trapping rate**
 \[\nu_{Ti} = (ZeKE/m_i)^{1/2} \]
 \[= 1.69 \times 10^7 Z^{1/2} K^{1/2} E^{1/2} \mu^{-1/2} \text{ sec}^{-1} \]

- **electron collision rate**
 \[\nu_e = 2.91 \times 10^{-6} n_e \ln \Lambda T_e^{-3/2} \text{ sec}^{-1} \]

- **ion collision rate**
 \[\nu_i = 4.80 \times 10^{-8} Z^4 \mu^{-1/2} n_i \ln \Lambda T_i^{-3/2} \text{ sec}^{-1} \]

Lengths

- **electron deBroglie length**
 \[\lambda = \hbar/(m_e kT_e)^{1/2} = 2.76 \times 10^{-8} T_e^{-1/2} \text{ cm} \]

- **classical distance of minimum approach**
 \[e^2/kT = 1.44 \times 10^{-7} T^{-1} \text{ cm} \]

- **electron gyroradius**
 \[r_e = \nu_{Te}/\omega_{ce} = 2.38 T_e^{1/2} B^{-1} \text{ cm} \]

- **ion gyroradius**
 \[r_i = \nu_{Ti}/\omega_{ci} \]
 \[= 1.02 \times 10^2 \mu^{1/2} Z^{-1} T_i^{1/2} B^{-1} \text{ cm} \]

- **electron inertial length**
 \[c/\omega_{pe} = 5.31 \times 10^5 n_e^{-1/2} \text{ cm} \]

- **ion inertial length**
 \[c/\omega_{pi} = 2.28 \times 10^7 Z^{-1} (\mu/n_i)^{1/2} \text{ cm} \]

- **Debye length**
 \[\lambda_D = (kT/4\pi n_e e^2)^{1/2} = 7.43 \times 10^2 T^{1/2} n^{-1/2} \text{ cm} \]
Velocities

electron thermal velocity

\[v_{Te} = \left(\frac{kT_e}{m_e} \right)^{1/2} \]

\[= 4.19 \times 10^7 \text{ cm/sec} \]

ion thermal velocity

\[v_{Ti} = \left(\frac{kT_i}{m_i} \right)^{1/2} \]

\[= 9.79 \times 10^5 \mu^{-1/2} T_i^{1/2} \text{ cm/sec} \]

ion sound velocity

\[c_s = \left(\frac{\gamma Z kT_e}{m_i} \right)^{1/2} \]

\[= 9.79 \times 10^5 (\gamma Z T_e / \mu)^{1/2} \text{ cm/sec} \]

Alfvén velocity

\[v_A = B / (4\pi n_i m_i)^{1/2} \]

\[= 2.18 \times 10^{11} \mu^{-1/2} n_i^{-1/2} B \text{ cm/sec} \]

Dimensionless

\((\text{electron/proton mass ratio})^{-1/2} = (m_e / m_p)^{1/2} = 2.33 \times 10^{-2} = 1/42.9\)

number of particles in Debye sphere

\[(4\pi/3) n \lambda_D^3 = 1.72 \times 10^9 T^{3/2} n^{-1/2}\]

Alfvén velocity/speed of light

\[v_A / c = 7.28 \mu^{-1/2} n_i^{-1/2} B \]

electron plasma/gyrofrequency ratio

\[\omega_{pe} / \omega_{ce} = 3.21 \times 10^{-3} n_e^{1/2} B^{-1} \]

ion plasma/gyrofrequency ratio

\[\omega_{pi} / \omega_{ci} = 0.137 \mu^{1/2} n_i^{1/2} B^{-1} \]

thermal/magnetic energy ratio

\[\beta = 8\pi n kT / B^2 = 4.03 \times 10^{-11} n T B^{-2} \]

magnetic/ion rest energy ratio

\[B^2 / 8\pi n_i m_i c^2 = 26.5 \mu^{-1} n_i^{-1} B^2 \]

Miscellaneous

Bohm diffusion coefficient

\[D_B = (c kT / 16eB) \]

\[= 6.25 \times 10^6 T B^{-1} \text{ cm}^2 / \text{sec} \]

transverse Spitzer resistivity

\[\eta_\perp = 1.15 \times 10^{-14} Z \ln \Lambda T^{-3/2} \text{ sec} \]

\[= 1.03 \times 10^{-2} Z \ln \Lambda T^{-3/2} \Omega \text{ cm} \]

The anomalous collision rate due to low-frequency ion-sound turbulence is

\[\nu^* \approx \omega_{pe} \tilde{W} / kT = 5.64 \times 10^4 n_e^{1/2} \tilde{W} / kT \text{ sec}^{-1} \]

where \(\tilde{W} \) is the total energy of waves with \(\omega / K < v_{Ti} \).

Magnetic pressure is given by

\[P_{mag} = B^2 / 8\pi = 3.98 \times 10^6 (B / B_0)^2 \text{ dynes/cm}^2 = 3.93 (B / B_0)^2 \text{ atm} \]

where \(B_0 = 10 \text{ kG} = 1 \text{ T} \).

Detonation energy of 1 kiloton of high explosive is

\[W_{kT} = 10^{12} \text{ cal} = 4.2 \times 10^{19} \text{ erg} \]
PLASMA DISPERSION FUNCTION

Definition\(^\text{16}\) (first form valid only for Im \(\zeta > 0\)):

\[
Z(\zeta) = \pi^{-1/2} \int_{-\infty}^{+\infty} \frac{dt \exp\left(-t^2\right)}{t - \zeta} = 2i \exp\left(-\zeta^2\right) \int_{-\infty}^{i\zeta} dt \exp\left(-t^2\right).
\]

Physically, \(\zeta = x + iy\) is the ratio of wave phase velocity to thermal velocity.

Differential equation:

\[
\frac{dZ}{d\zeta} = -2\left(1 + \zeta Z\right), \quad Z(0) = i\pi^{1/2}; \quad \frac{d^2Z}{d\zeta^2} + 2\zeta \frac{dZ}{d\zeta} + 2Z = 0.
\]

Real argument \((y = 0)\):

\[Z(x) = \exp\left(-x^2\right)\left(i\pi^{1/2} - 2 \int_{0}^{x} dt \exp\left(t^2\right)\right).\]

Imaginary argument \((x = 0)\):

\[Z(iy) = i\pi^{1/2} \exp\left(y^2\right) \left[1 - \text{erf}(y)\right].\]

Power series (small argument):

\[Z(\zeta) = i\pi^{1/2} \exp\left(-\zeta^2\right) - 2\zeta \left(1 - 2\zeta^2/3 + 4\zeta^4/15 - 8\zeta^6/105 + \cdots\right).\]

Asymptotic series, \(|\zeta| \gg 1\) (Ref. 17):

\[Z(\zeta) = i\pi^{1/2} \sigma \exp\left(-\zeta^2\right) - \zeta^{-1} \left(1 + 1/2\zeta^2 + 3/4\zeta^4 + 15/8\zeta^6 + \cdots\right),\]

where

\[
\sigma = \begin{cases}
0 & y > |x|^{-1} \\
1 & |y| < |x|^{-1} \\
2 & y < -|x|^{-1}
\end{cases}
\]

Symmetry properties (the asterisk denotes complex conjugation):

\[Z(\zeta^*) = -[Z(-\zeta)]^*;\]

\[Z(\zeta^*) = [Z(\zeta)]^* + 2i\pi^{1/2} \exp[-(\zeta^*)^2] \quad (y > 0).\]

Two-pole approximations\(^\text{18}\) (good for \(\zeta\) in upper half plane except when \(y < \pi^{1/2}x^2 \exp(-x^2), \ x \gg 1\)):

\[Z(\zeta) \approx \frac{0.50 + 0.81i}{a - \zeta} - \frac{0.50 - 0.81i}{a^* + \zeta}, \quad a = 0.51 - 0.81i;\]

\[Z'(\zeta) \approx \frac{0.50 + 0.96i}{(b - \zeta)^2} + \frac{0.50 - 0.96i}{(b^* + \zeta)^2}, \quad b = 0.48 - 0.91i.\]
COLLISIONS AND TRANSPORT

Temperatures are in eV; the corresponding value of Boltzmann’s constant is \(k = 1.60 \times 10^{-12} \text{erg/eV} \); masses \(\mu, \mu' \) are in units of the proton mass; \(e_\alpha = Z_\alpha e \) is the charge of species \(\alpha \). All other units are cgs except where noted.

Relaxation Rates

Rates are associated with four relaxation processes arising from the interaction of test particles (labeled \(\alpha \)) streaming with velocity \(\mathbf{v}_\alpha \) through a background of field particles (labeled \(\beta \)):

- **slowing down**
 \[
 \frac{d\mathbf{v}_\alpha}{dt} = -\nu_s^\alpha \mathbf{v}_\alpha
 \]

- **transverse diffusion**
 \[
 \frac{d}{dt} (\mathbf{v}_\alpha - \bar{\mathbf{v}}_\alpha)_\perp = \nu_\perp^\alpha \mathbf{v}_\alpha^2
 \]

- **parallel diffusion**
 \[
 \frac{d}{dt} (\mathbf{v}_\alpha - \bar{\mathbf{v}}_\alpha)_\parallel = \nu_\parallel^\alpha \mathbf{v}_\alpha^2
 \]

- **energy loss**
 \[
 \frac{d}{dt} \mathbf{v}_\alpha^2 = -\nu_\epsilon^\alpha \mathbf{v}_\alpha^2,
 \]

where \(\mathbf{v}_\alpha = |\mathbf{v}_\alpha| \) and the averages are performed over an ensemble of test particles and a Maxwellian field particle distribution. The exact formulas may be written\(^{19}\)

\[
\begin{align*}
\nu_s^\alpha \beta &= (1 + m_\alpha/m_\beta)\psi(x^\alpha \beta)\nu_0^\alpha \beta; \\
\nu_\perp^\alpha \beta &= 2 \left[(1 - 1/2x^\alpha \beta)\psi(x^\alpha \beta) + \psi'(x^\alpha \beta) \right] \nu_0^\alpha \beta; \\
\nu_\parallel^\alpha \beta &= \left[\psi(x^\alpha \beta)/x^\alpha \beta \right] \nu_0^\alpha \beta; \\
\nu_\epsilon^\alpha \beta &= 2 \left[(m_\alpha/m_\beta)\psi(x^\alpha \beta) - \psi'(x^\alpha \beta) \right] \nu_0^\alpha \beta,
\end{align*}
\]

where

\[
\begin{align*}
\nu_0^\alpha \beta &= 4\pi e_\alpha^2 e_\beta^2 \lambda_\alpha \beta n_\beta/m_\alpha^2 \mathbf{v}_\alpha^3; \\
x^\alpha \beta &= m_\beta \mathbf{v}_\alpha^2/2kT_\beta;
\end{align*}
\]

\[
\psi(x) = \frac{2}{\sqrt{\pi}} \int_0^x dt \, t^{1/2} e^{-t}; \quad \psi'(x) = \frac{d\psi}{dx},
\]

and \(\lambda_\alpha \beta = \ln \Lambda_\alpha \beta \) is the Coulomb logarithm (see below). Limiting forms of \(\nu_s, \nu_\perp \) and \(\nu_\parallel \) are given in the following table. All the expressions shown
Electron–electron
\[
\nu_{ee}^e/n_{ee} \approx 5.8 \times 10^{-6} T^{-3/2} \quad \rightarrow \quad 7.7 \times 10^{-6} \epsilon^{-3/2}
\]
\[
\nu_{ee}^\perp/n_{ee} \approx 5.8 \times 10^{-6} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 7.7 \times 10^{-6} \epsilon^{-3/2}
\]
\[
\nu_{ee}^\parallel/n_{ee} \approx 2.9 \times 10^{-6} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 3.9 \times 10^{-6} T \epsilon^{-5/2}
\]

Electron–ion
\[
\nu_{ei}^e/n_{ei} Z^2 \lambda_{ei} \approx 0.23 \mu^{3/2} T^{-3/2} \quad \rightarrow \quad 3.9 \times 10^{-6} \epsilon^{-3/2}
\]
\[
\nu_{ei}^\perp/n_{ei} Z^2 \lambda_{ei} \approx 2.5 \times 10^{-4} \mu^{1/2} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 7.7 \times 10^{-6} \epsilon^{-3/2}
\]
\[
\nu_{ei}^\parallel/n_{ei} Z^2 \lambda_{ei} \approx 1.2 \times 10^{-4} \mu^{1/2} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 2.1 \times 10^{-9} \mu^{-1} T \epsilon^{-5/2}
\]

Ion–electron
\[
\nu_{ie}^i/n_{ie} Z^2 \lambda_{ie} \approx 1.6 \times 10^{-9} \mu^{-1} T^{-3/2} \quad \rightarrow \quad 1.7 \times 10^{-4} \mu^{1/2} \epsilon^{-3/2}
\]
\[
\nu_{ie}^\perp/n_{ie} Z^2 \lambda_{ie} \approx 3.2 \times 10^{-9} \mu^{-1} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 1.8 \times 10^{-7} \mu^{-1/2} \epsilon^{-3/2}
\]
\[
\nu_{ie}^\parallel/n_{ie} Z^2 \lambda_{ie} \approx 1.6 \times 10^{-9} \mu^{-1} T^{-1/2} \epsilon^{-1} \quad \rightarrow \quad 1.7 \times 10^{-4} \mu^{1/2} T \epsilon^{-5/2}
\]

Ion–ion
\[
\frac{\nu_{ii}^{i|l}}{n_i Z^2 Z' i|l} \approx 6.8 \times 10^{-8} \mu^{1/2} \left(1 + \frac{\mu'}{\mu} \right)^{-1/2} T^{-3/2}
\]
\[
\rightarrow 9.0 \times 10^{-8} \left(\frac{1}{\mu} + \frac{1}{\mu'} \right) \frac{\mu^{1/2}}{\epsilon^{3/2}}
\]
\[
\frac{\nu_{i|l}^l}{n_i Z^2 Z' i|l} \approx 1.4 \times 10^{-7} \mu^{1/2} \mu^{-1} T^{-1/2} \epsilon^{-1}
\]
\[
\rightarrow 1.8 \times 10^{-7} \mu^{-1/2} \epsilon^{-3/2}
\]
\[
\frac{\nu_{i|l}^\parallel}{n_i Z^2 Z' i|l} \approx 6.8 \times 10^{-8} \mu^{1/2} \mu^{-1} T^{-1/2} \epsilon^{-1}
\]
\[
\rightarrow 9.0 \times 10^{-8} \mu^{1/2} \mu^{-1} T \epsilon^{-5/2}
\]

In the same limits, the energy transfer rate follows from the identity
\[
\nu_\epsilon = 2 \nu_{i|l} - \nu_{i|l} - \nu_{i|l},
\]
except for the case of fast electrons or fast ions scattered by ions, where the leading terms cancel. Then the appropriate forms are
\[
\nu_\epsilon^e \rightarrow 4.2 \times 10^{-9} n_i Z^2 \lambda_{ei}
\]
\[
\left[\epsilon^{-3/2} \mu^{-1} - 8.9 \times 10^4 (\mu/T)^{1/2} \epsilon^{-1} \exp(-1836 \mu \epsilon/T) \right] \text{sec}^{-1}
\]

32
\[\nu_{\epsilon}^{i|i'} \rightarrow 1.8 \times 10^{-7} n_{\epsilon'} Z^2 Z'^2 \lambda_{ii'} \]

\[\left[\epsilon^{-3/2} \mu^{1/2}/\mu' - 1.1[(\mu + \mu')/\mu\mu'](\mu'/T')^{1/2} \exp(-\mu'/\mu T') \right] \sec^{-1}. \]

In general, the energy transfer rate \(\nu_{\alpha\beta}^\alpha \) is positive for \(\epsilon > \epsilon_{\alpha*} \) and negative for \(\epsilon < \epsilon_{\alpha*} \), where \(x^* = (m_\beta/m_\alpha)\epsilon_{\alpha*}/T_\beta \) is the solution of \(\psi'(x^*) = (m_\alpha|m_\beta)\psi(x^*) \). The ratio \(\epsilon_{\alpha*}/T_\beta \) is given for a number of specific \(\alpha, \beta \) in the following table:

| \(\alpha \setminus \beta \) | \(e|e \) | \(e|e, i|i \) | \(e|p \) | \(e|D \) | \(e|T, e|He^3 \) | \(e|He^4 \) |
|-------------------------------|-------|-------------|-------|-------|-------------|-------------|
| \(\epsilon_{\alpha*}/T_\beta \) | 1.5 | 0.98 | 4.8 \times 10^{-3} | 2.6 \times 10^{-3} | 1.8 \times 10^{-3} | 1.4 \times 10^{-3} |

When both species are near Maxwellian, with \(T_i \approx T_e \), there are just two characteristic collision rates. For \(Z = 1 \),

\[\nu_e = 2.9 \times 10^{-6} n\lambda T_e^{-3/2} \sec^{-1}; \]
\[\nu_i = 4.8 \times 10^{-8} n\lambda T_i^{-3/2} \mu^{-1/2} \sec^{-1}. \]

Temperature Isotropization

Isotropization is described by

\[\frac{dT_\perp}{dt} = -\frac{1}{2} \frac{dT_\parallel}{dt} = -\nu_T^\alpha (T_\perp - T_\parallel), \]

where, if \(A \equiv T_\perp/T_\parallel - 1 > 0 \),

\[\nu_T^\alpha = \frac{2\sqrt{\pi} e_\alpha^2 e_\beta^2 n_\alpha \lambda_{\alpha\beta}}{m_\alpha^{1/2}(kT_\parallel)^{3/2}} A^{-2} \left[-3 + (A + 3) \tan^{-1}(A^{1/2}) \right]. \]

If \(A < 0 \), \(\tan^{-1}(A^{1/2})/A^{1/2} \) is replaced by \(\tanh^{-1}(-A)^{1/2}/(A)^{1/2} \). For \(T_\perp \approx T_\parallel \equiv T \),

\[\nu_T^e = 8.2 \times 10^{-7} n\lambda T^{-3/2} \sec^{-1}; \]
\[\nu_T^i = 1.9 \times 10^{-8} n\lambda Z^2 \mu^{-1/2} T^{-3/2} \sec^{-1}. \]
Thermal Equilibration

If the components of a plasma have different temperatures, but no relative drift, equilibration is described by

\[
\frac{dT_\alpha}{dt} = \sum_\beta \tilde{\nu}_\epsilon^\alpha \beta (T_\beta - T_\alpha),
\]

where

\[
\tilde{\nu}_\epsilon^\alpha \beta = 1.8 \times 10^{-19} \frac{(m_\alpha m_\beta)^{1/2} Z_\alpha Z_\beta^2 n_\beta \lambda_{\alpha \beta}}{(m_\alpha T_\beta + m_\beta T_\alpha)^{3/2}} \text{sec}^{-1}.
\]

For electrons and ions with \(T_e \approx T_i \equiv T \), this implies

\[
\tilde{\nu}_e^i / n_i = \tilde{\nu}_i^e / n_e = 3.2 \times 10^{-9} Z^2 \lambda/\mu T^{3/2} \text{cm}^3 \text{sec}^{-1}.
\]

Coulomb Logarithm

For test particles of mass \(m_\alpha \) and charge \(e_\alpha = Z_\alpha e \) scattering off field particles of mass \(m_\beta \) and charge \(e_\beta = Z_\beta e \), the Coulomb logarithm is defined as \(\lambda = \ln \Lambda = \ln(r_{\text{max}}/r_{\text{min}}) \). Here \(r_{\text{min}} \) is the larger of \(\bar{u}^2 \) and \(\bar{\omega}_c^{-1} \), averaged over both particle velocity distributions, where \(m_{\alpha \beta} = m_\alpha m_\beta/(m_\alpha + m_\beta) \) and \(\bar{u} = u_\alpha - u_\beta \); \(r_{\text{max}} = (4\pi \sum n_\gamma e_\gamma^2 / kT_\gamma)^{-1/2} \), where the summation extends over all species \(\gamma \) for which \(\bar{u}^2 < vT_\gamma^2 = kT_\gamma/m_\gamma \). If this inequality cannot be satisfied, or if either \(\bar{u}_c^{-1} < r_{\text{max}} \) or \(\bar{\omega}_c^{-1} < r_{\text{max}} \), the theory breaks down. Typically \(\lambda \approx 10^{-20} \). Corrections to the transport coefficients are \(O(\lambda^{-1}) \); hence the theory is good only to \(\sim 10\% \) and fails when \(\lambda \sim 1 \).

The following cases are of particular interest:

(a) Thermal electron–electron collisions

\[
\lambda_{\epsilon \epsilon} = 23.5 - \ln(n_e^{1/2} T_e^{-5/4}) - [10^{-5} + (\ln T_e - 2)^2 / 16]^{1/2}
\]

(b) Electron–ion collisions

\[
\lambda_{\epsilon i} = \lambda_{i \epsilon} = 23 - \ln \left(n_e^{1/2} Z T_e^{-3/2} \right), \quad T_i m_e/m_i < T_e < 10Z^2 \text{ eV};
\]

\[
= 24 - \ln \left(n_e^{1/2} T_e^{-1} \right), \quad T_i m_e/m_i < 10Z^2 \text{ eV} < T_e
\]

\[
= 30 - \ln \left(n_i^{1/2} T_i^{-3/2} Z^2 \mu^{-1} \right), \quad T_e < T_i Z m_e/m_i.
\]

(c) Mixed ion–ion collisions

\[
\lambda_{i i'} = \lambda_{i' i} = 23 - \ln \left[\frac{Z Z' (\mu + \mu')}{\mu T_{i'} + \mu' T_i} \left(\frac{n_i Z^2}{T_i} + \frac{n_{i'} Z'^2}{T_{i'}} \right)^{1/2} \right].
\]
Counterstreaming ions (relative velocity \(v_D = \beta D c \)) in the presence of warm electrons, \(kT_i/m_i, kT_i'/m_i' < v_D^2 < kT_e/m_e \)

\[
\lambda_{ii'} = \lambda_{i'i} = 35 - \ln \left[\frac{Z Z' (\mu + \mu')}{\mu' \mu D^2} \left(\frac{n_e}{T_e} \right)^{1/2} \right].
\]

Fokker-Planck Equation

\[
\frac{Df^\alpha}{Dt} \equiv \frac{\partial f^\alpha}{\partial t} + \mathbf{v} \cdot \nabla f^\alpha + \mathbf{F} \cdot \nabla f^\alpha = \left(\frac{\partial f^\alpha}{\partial t} \right)_{\text{coll}},
\]

where \(\mathbf{F} \) is an external force field. The general form of the collision integral is

\[
(\partial f^\alpha/\partial t)_{\text{coll}} = - \sum_\beta \nabla_\mathbf{v} \cdot \mathbf{J}^\alpha_{\beta},
\]

with

\[
\mathbf{J}^\alpha_{\beta} = 2\pi \lambda_{\alpha\beta} \frac{e_\alpha^2 e_\beta^2}{m_\alpha} \int d^3 v' (u^2 I - uu) u^{-3}
\]

\[
\cdot \left\{ \frac{1}{m_\beta} f^\alpha(\mathbf{v}) \nabla_\mathbf{v}' f^\beta(\mathbf{v}') - \frac{1}{m_\alpha} f^\beta(\mathbf{v}') \nabla_\mathbf{v} f^\alpha(\mathbf{v}) \right\}
\]

(Landau form) where \(\mathbf{u} = \mathbf{v}' - \mathbf{v} \) and \(I \) is the unit dyad, or alternatively,

\[
\mathbf{J}^\alpha_{\beta} = 4\pi \lambda_{\alpha\beta} \frac{e_\alpha^2 e_\beta^2}{m_\alpha^2} \left\{ f^\alpha(\mathbf{v}) \nabla_\mathbf{v} H(\mathbf{v}) - \frac{1}{2} \nabla_\mathbf{v} \cdot \left[f^\alpha(\mathbf{v}) \nabla_\mathbf{v} \nabla_\mathbf{v} G(\mathbf{v}) \right] \right\},
\]

where the Rosenbluth potentials are

\[
G(\mathbf{v}) = \int f^\beta(\mathbf{v}') u d^3 v'
\]

\[
H(\mathbf{v}) = \left(1 + \frac{m_\alpha}{m_\beta} \right) \int f^\beta(\mathbf{v}') u^{-1} d^3 v'.
\]

If species \(\alpha \) is a weak beam (number and energy density small compared with background) streaming through a Maxwellian plasma, then

\[
\mathbf{J}^\alpha_{\beta} = - \frac{m_\alpha}{m_\alpha + m_\beta} \nu^\alpha_{\beta} \nu f^\alpha - \frac{1}{2} \nu^\alpha_{\|} \nu \nu \cdot \nabla_\mathbf{v} f^\alpha
\]

\[
- \frac{1}{4} \nu^\perp \left(v^2 I - \nu \nu \right) \cdot \nabla_\mathbf{v} f^\alpha.
\]
B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the Fokker-Planck collision terms can be approximated according to

\[
\frac{Df_e}{Dt} = \nu_{ee}(F_e - f_e) + \nu_{ei}(\bar{F}_e - f_e); \\
\frac{Df_i}{Dt} = \nu_{ie}(\bar{F}_i - f_i) + \nu_{ii}(F_i - f_i).
\]

The respective slowing-down rates \(\nu_{\alpha\beta}\) given in the Relaxation Rate section above can be used for \(\nu_{\alpha\beta}\), assuming slow ions and fast electrons, with \(\epsilon\) replaced by \(T_\alpha\). (For \(\nu_{ee}\) and \(\nu_{ii}\), one can equally well use \(\nu_\perp\), and the result is insensitive to whether the slow- or fast-test-particle limit is employed.) The Maxwellians \(F_\alpha\) and \(\bar{F}_\alpha\) are given by

\[
F_\alpha = n_\alpha \left(\frac{m_\alpha}{2\pi k T_\alpha} \right)^{3/2} \exp \left\{ -\left[\frac{m_\alpha (v - v_\alpha)^2}{2kT_\alpha} \right] \right\}; \\
\bar{F}_\alpha = n_\alpha \left(\frac{m_\alpha}{2\pi k \bar{T}_\alpha} \right)^{3/2} \exp \left\{ -\left[\frac{m_\alpha (v - \bar{v}_\alpha)^2}{2k\bar{T}_\alpha} \right] \right\},
\]

where \(n_\alpha\), \(v_\alpha\) and \(T_\alpha\) are the number density, mean drift velocity, and effective temperature obtained by taking moments of \(f_\alpha\). Some latitude in the definition of \(\bar{T}_\alpha\) and \(\bar{v}_\alpha\) is possible; one choice is \(\bar{T}_e = T_i, \bar{T}_i = T_e, \bar{v}_e = v_i, \bar{v}_i = v_e\).

Transport Coefficients

Transport equations for a multispecies plasma:

\[
\frac{d^\alpha n_\alpha}{dt} + n_\alpha \nabla \cdot v_\alpha = 0; \\
m_\alpha n_\alpha \frac{d^\alpha v_\alpha}{dt} = -\nabla p_\alpha - \nabla \cdot P_\alpha + Z_\alpha e n_\alpha \left[E + \frac{1}{c} v_\alpha \times B \right] + R_\alpha; \\
\frac{3}{2} n_\alpha \frac{d^\alpha kT_\alpha}{dt} + p_\alpha \nabla \cdot v_\alpha = -\nabla \cdot q_\alpha - P_\alpha : \nabla v_\alpha + Q_\alpha.
\]

Here \(\frac{d^\alpha}{dt} \equiv \partial/\partial t + v_\alpha \cdot \nabla;\) \(p_\alpha = n_\alpha kT_\alpha\), where \(k\) is Boltzmann’s constant; \(R_\alpha = \sum_\beta R_{\alpha\beta}\) and \(Q_\alpha = \sum_\beta Q_{\alpha\beta}\), where \(R_{\alpha\beta}\) and \(Q_{\alpha\beta}\) are respectively the momentum and energy gained by the \(\alpha\)th species through collisions with the \(\beta\)th; \(P_\alpha\) is the stress tensor; and \(q_\alpha\) is the heat flow.
The transport coefficients in a simple two-component plasma (electrons and singly charged ions) are tabulated below. Here \parallel and \perp refer to the direction of the magnetic field $B = bB$; $u = v_e - v_i$ is the relative streaming velocity; $n_e = n_i \equiv n$; $j = -neu$ is the current; $\omega_{ce} = 1.76 \times 10^7 B \sec^{-1}$ and $\omega_{ci} = (m_e/m_i)\omega_{ce}$ are the electron and ion gyrofrequencies, respectively; and the basic collisional times are taken to be

$$\tau_e = \frac{3\sqrt{m_e(kT_e)^{3/2}}}{4\sqrt{2\pi n\lambda_e^4}} = 3.44 \times 10^5 \frac{T_e^{3/2}}{n\lambda} \sec,$$

where λ is the Coulomb logarithm, and

$$\tau_i = \frac{3\sqrt{m_i(kT_i)^{3/2}}}{4\sqrt{\pi n\lambda_e^4}} = 2.09 \times 10^7 \frac{T_i^{3/2}}{n\lambda} \mu^{1/2} \sec.$$

In the limit of large fields ($\omega_{ca}\tau_\alpha \gg 1$, $\alpha = i, e$) the transport processes may be summarized as follows:

- **momentum transfer** $R_{e,i} = -R_{i,e} \equiv R = R_u + R_T$;
- **frictional force** $R_u = ne(j_\parallel/\sigma_\parallel + j_\perp/\sigma_\perp)$;
- **electrical conductivities** $\sigma_\parallel = 1.96\sigma_0$; $\sigma_\perp = \sigma_0(\omega_{ce}\tau_e)^{-1}$; $\sigma_0 = ne^2\tau_e/m_e$
- **thermal force** $R_T = -0.71n\nabla\parallel (kT_e) - \frac{3n}{2\omega_{ce}\tau_e} b \times \nabla_\perp (kT_e)$;
- **ion heating** $Q_i = \frac{3m_e nk}{m_i\tau_i} (T_e - T_i)$;
- **electron heating** $Q_e = -Q_i - R \cdot u$;
- **ion heat flux** $q_i = -\kappa_\parallel \nabla\parallel (kT_i) - \kappa_\perp \nabla_\perp (kT_i) + \kappa_\wedge b \times \nabla_\perp (kT_i)$;
- **ion thermal conductivities** $\kappa_\parallel = 3.9 \frac{nkT_i\tau_i}{m_i}$; $\kappa_\perp = 2\frac{nkT_i}{m_i\omega_{ci}^2\tau_i}$; $\kappa_\wedge = \frac{5nkT_i}{2m_i\omega_{ci}}$
- **electron heat flux** $q_e = q^e_u + q^e_T$;
- **frictional heat flux** $q^e_u = 0.71nkT_e u_\parallel + \frac{3nkT_e}{2\omega_{ce}\tau_e} b \times u_\perp$;
- **thermal gradient heat flux** $q^e_T = -\kappa^e_\parallel \nabla\parallel (kT_e) - \kappa^e_\perp \nabla_\perp (kT_e) - \kappa^e_\wedge b \times \nabla_\perp (kT_e)$;
- **electron thermal conductivities** $\kappa^e_\parallel = 3.2 \frac{nkT_e\tau_e}{m_e}$; $\kappa^e_\perp = 4.7 \frac{nkT_e}{m_e\omega_{ce}^2\tau_e}$; $\kappa^e_\wedge = \frac{5nkT_e}{2m_e\omega_{ce}}$.
stress tensor (either species)

\[P_{xx} = -\frac{\eta_0}{2}(W_{xx} + W_{yy}) - \frac{\eta_1}{2}(W_{xx} - W_{yy}) - \eta_3 W_{xy}; \]
\[P_{yy} = -\frac{\eta_0}{2}(W_{xx} + W_{yy}) + \frac{\eta_1}{2}(W_{xx} - W_{yy}) + \eta_3 W_{xy}; \]
\[P_{xy} = P_{yx} = -\frac{\eta_1}{2}W_{xy} + \frac{\eta_3}{2}(W_{xx} - W_{yy}); \]
\[P_{xz} = P_{zx} = -\frac{\eta_2}{2}W_{xz} - \frac{\eta_4}{2}W_{yz}; \]
\[P_{yz} = P_{zy} = -\frac{\eta_2}{2}W_{yz} + \frac{\eta_4}{2}W_{xz}; \]
\[P_{zz} = -\eta_0 W_{zz} \]

(here the z axis is defined parallel to B);

ion viscosity

\[\eta_0^i = 0.96nkT_i \tau_i; \quad \eta_1^i = \frac{3nkT_i}{10\omega_{ci}^2 \tau_i}; \quad \eta_2^i = \frac{6nkT_i}{5\omega_{ci}^2 \tau_i}; \]
\[\eta_3^i = \frac{nkT_i}{2\omega_{ci}^2}; \quad \eta_4^i = \frac{nkT_i}{\omega_{ci}^2}; \]

electron viscosity

\[\eta_0^e = 0.73nkT_e \tau_e; \quad \eta_1^e = 0.51\frac{nkT_e}{\omega_{ce}^2 \tau_e}; \quad \eta_2^e = 2.0\frac{nkT_e}{\omega_{ce}^2 \tau_e}; \]
\[\eta_3^e = -\frac{nkT_e}{2\omega_{ce}^2}; \quad \eta_4^e = -\frac{nkT_e}{\omega_{ce}^2}. \]

For both species the rate-of-strain tensor is defined as

\[W_{jk} = \frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} - \frac{2}{3} \delta_{jk} \nabla \cdot \mathbf{v}. \]

When \(B = 0 \) the following simplifications occur:

\[\mathbf{R}_u = ne\mathbf{j}/\sigma\parallel; \quad \mathbf{R}_T = -0.71n\nabla(kT_e); \quad \mathbf{q}_i = -\kappa_i^i \nabla(kT_i); \]
\[\mathbf{q}_u^e = 0.71nkT_e \mathbf{u}; \quad \mathbf{q}_T^e = -\kappa_e^e \nabla(kT_e); \quad P_{jk} = -\eta_0 W_{jk}. \]

For \(\omega_{ce} \tau_e \gg 1 \gg \omega_{ci} \tau_i \), the electrons obey the high-field expressions and the ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates of change satisfy \(d/dt \ll 1/\tau \), where \(\tau \) is the longest collisional time scale, and (in the absence of a magnetic field) (2) macroscopic length scales \(L \) satisfy \(L \gg l \), where \(l = \bar{v} \tau \) is the mean free path. In a strong field, \(\omega_{ce} \tau \gg 1 \), condition (2) is replaced by \(L\parallel \gg l \) and \(L\perp \gg \sqrt{lr_e} \) (\(L \parallel \gg \tau_e \) in a uniform field), where \(L\parallel \) is a macroscopic scale parallel to the field \(B \) and \(L\perp \) is the smaller of \(B/|\nabla \perp B| \) and the transverse plasma dimension. In addition, the standard transport coefficients are valid only when (3) the Coulomb logarithm satisfies \(\lambda \gg 1 \); (4) the electron gyroradius satisfies \(r_e \gg \lambda D \), or \(8\pi n_e m_e c^2 \gg B^2 \); (5) relative drifts \(\mathbf{u} = \mathbf{v}_\alpha - \mathbf{v}_\beta \) between two species are small compared with the
thermal velocities, i.e., \(u^2 \ll kT_\alpha/m_\alpha, kT_\beta/m_\beta \); and (6) anomalous transport processes owing to microinstabilities are negligible.

Weakly Ionized Plasmas

Collision frequency for scattering of charged particles of species \(\alpha \) by neutrals is

\[
\nu_\alpha = n_0 \sigma_\alpha^{\alpha|0} (kT_\alpha/m_\alpha)^{1/2},
\]

where \(n_0 \) is the neutral density, \(\sigma_\alpha^{\alpha|0} \) is the cross section, typically \(\sim 5 \times 10^{-15} \) cm\(^2\) and weakly dependent on temperature, and \((T_0/m_0)^{1/2} < (T_\alpha/m_\alpha)^{1/2} \) where \(T_0 \) and \(m_0 \) are the temperature and mass of the neutrals.

When the system is small compared with a Debye length, \(L \ll \lambda_D \), the charged particle diffusion coefficients are

\[
D_\alpha = kT_\alpha/m_\alpha \nu_\alpha,
\]

In the opposite limit, both species diffuse at the ambipolar rate

\[
D_A = \frac{\mu_i D_e - \mu_e D_i}{\mu_i - \mu_e} = \frac{(T_i + T_e) D_i D_e}{T_i D_e + T_i D_i},
\]

where \(\mu_\alpha = e_\alpha/m_\alpha \nu_\alpha \) is the mobility. The conductivity \(\sigma_\alpha \) satisfies \(\sigma_\alpha = n_\alpha e_\alpha \mu_\alpha \).

In the presence of a magnetic field \(B \) the scalars \(\mu \) and \(\sigma \) become tensors,

\[
\mathbf{J}^\alpha = \sigma^\alpha \cdot \mathbf{E} = \sigma^\alpha_\parallel \mathbf{E}_\parallel + \sigma^\alpha_\perp \mathbf{E}_\perp + \sigma^\alpha_\wedge \mathbf{E} \times \mathbf{b},
\]

where \(\mathbf{b} = B/B \) and

\[
\sigma^\alpha_\parallel = n_\alpha e_\alpha^2/m_\alpha \nu_\alpha ;
\]

\[
\sigma^\alpha_\perp = \sigma^\alpha_\parallel \nu_\alpha^2 / (\nu_\alpha^2 + \omega_{c\alpha}^2);
\]

\[
\sigma^\alpha_\wedge = \sigma^\alpha_\parallel \nu_\alpha \omega_{c\alpha} / (\nu_\alpha^2 + \omega_{c\alpha}^2).
\]

Here \(\sigma_\perp \) and \(\sigma_\wedge \) are the Pedersen and Hall conductivities, respectively.
APPROXIMATE MAGNITUDES IN SOME TYPICAL PLASMAS

<table>
<thead>
<tr>
<th>Plasma Type</th>
<th>$n \text{ cm}^{-3}$</th>
<th>$T \text{ eV}$</th>
<th>$\omega_{pe} \text{ sec}^{-1}$</th>
<th>$\lambda_D \text{ cm}$</th>
<th>$n\lambda_D^3$</th>
<th>$\nu_{ei} \text{ sec}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstellar gas</td>
<td>1×10^6</td>
<td>1</td>
<td>6×10^4</td>
<td>7×10^2</td>
<td>4×10^8</td>
<td>7×10^{-5}</td>
</tr>
<tr>
<td>Gaseous nebula</td>
<td>10^3</td>
<td>1</td>
<td>2×10^6</td>
<td>20</td>
<td>8×10^6</td>
<td>6×10^{-2}</td>
</tr>
<tr>
<td>Solar Corona</td>
<td>10^9</td>
<td>10^2</td>
<td>2×10^9</td>
<td>2×10^{-1}</td>
<td>8×10^6</td>
<td>60</td>
</tr>
<tr>
<td>Diffuse hot plasma</td>
<td>10^{12}</td>
<td>10^2</td>
<td>6×10^{10}</td>
<td>7×10^{-5}</td>
<td>4×10^5</td>
<td>40</td>
</tr>
<tr>
<td>Solar atmosphere, gas discharge</td>
<td>10^{12}</td>
<td>10^2</td>
<td>6×10^{11}</td>
<td>7×10^{-5}</td>
<td>40</td>
<td>2×10^9</td>
</tr>
<tr>
<td>Warm plasma</td>
<td>10^{14}</td>
<td>10</td>
<td>6×10^{11}</td>
<td>2×10^{-4}</td>
<td>8×10^2</td>
<td>10^7</td>
</tr>
<tr>
<td>Hot plasma</td>
<td>10^{14}</td>
<td>10^2</td>
<td>6×10^{11}</td>
<td>7×10^{-4}</td>
<td>4×10^4</td>
<td>4×10^6</td>
</tr>
<tr>
<td>Thermonuclear plasma</td>
<td>10^{15}</td>
<td>10^4</td>
<td>2×10^{12}</td>
<td>2×10^{-3}</td>
<td>8×10^6</td>
<td>5×10^4</td>
</tr>
<tr>
<td>Theta pinch</td>
<td>10^{16}</td>
<td>10^2</td>
<td>6×10^{12}</td>
<td>7×10^{-5}</td>
<td>4×10^3</td>
<td>3×10^8</td>
</tr>
<tr>
<td>Dense hot plasma</td>
<td>10^{18}</td>
<td>10^2</td>
<td>6×10^{13}</td>
<td>7×10^{-6}</td>
<td>4×10^2</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>Laser Plasma</td>
<td>10^{20}</td>
<td>10^2</td>
<td>6×10^{14}</td>
<td>7×10^{-7}</td>
<td>40</td>
<td>2×10^{12}</td>
</tr>
</tbody>
</table>

The diagram (facing) gives comparable information in graphical form.22
IONOSPHERIC PARAMETERS

The following tables give average nighttime values. Where two numbers are entered, the first refers to the lower and the second to the upper portion of the layer.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>E Region</th>
<th>F Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (km)</td>
<td>90–160</td>
<td>160–500</td>
</tr>
<tr>
<td>Number density (m$^{-3}$)</td>
<td>1.5×10^{10}–3.0×10^{10}</td>
<td>5×10^{10}–2×10^{11}</td>
</tr>
<tr>
<td>Height-integrated number density (m$^{-2}$)</td>
<td>9×10^{14}</td>
<td>4.5×10^{15}</td>
</tr>
<tr>
<td>Ion-neutral collision frequency (sec$^{-1}$)</td>
<td>2×10^{3}–10^{2}</td>
<td>0.5–0.05</td>
</tr>
<tr>
<td>Ion gyro-/collision frequency ratio κ_i</td>
<td>0.09–2.0</td>
<td>4.6×10^{2}–5.0×10^{3}</td>
</tr>
<tr>
<td>Ion Pederson factor $\kappa_i/(1 + \kappa_i^2)$</td>
<td>0.09–0.5</td>
<td>2.2×10^{-3}–2×10^{-4}</td>
</tr>
<tr>
<td>Ion Hall factor $\kappa_i^2/(1 + \kappa_i^2)$</td>
<td>8×10^{-4}–0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Electron-neutral collision frequency</td>
<td>1.5×10^{4}–9.0×10^{2}</td>
<td>80–10</td>
</tr>
<tr>
<td>Electron gyro-/collision frequency ratio κ_e</td>
<td>4.1×10^{2}–6.9×10^{3}</td>
<td>7.8×10^{4}–6.2×10^{5}</td>
</tr>
<tr>
<td>Electron Pederson factor $\kappa_e/(1 + \kappa_e^2)$</td>
<td>2.7×10^{-3}–1.5×10^{-4}</td>
<td>10^{-5}–1.5×10^{-6}</td>
</tr>
<tr>
<td>Electron Hall factor $\kappa_e^2/(1 + \kappa_e^2)$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean molecular weight</td>
<td>28–26</td>
<td>22–16</td>
</tr>
<tr>
<td>Ion gyrofrequency (sec$^{-1}$)</td>
<td>180–190</td>
<td>230–300</td>
</tr>
<tr>
<td>Neutral diffusion coefficient (m2 sec$^{-1}$)</td>
<td>$30–5 \times 10^{3}$</td>
<td>10^5</td>
</tr>
</tbody>
</table>

The terrestrial magnetic field in the lower ionosphere at equatorial latitudes is approximately $B_0 = 0.35 \times 10^{-4}$ tesla. The earth’s radius is $R_E = 6371$ km.
Solar Physics Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass</td>
<td>M_\odot</td>
<td>1.99×10^{33}</td>
<td>g</td>
</tr>
<tr>
<td>Radius</td>
<td>R_\odot</td>
<td>6.96×10^{10}</td>
<td>cm</td>
</tr>
<tr>
<td>Surface gravity</td>
<td>g_\odot</td>
<td>2.74×10^{4}</td>
<td>cm s$^{-2}$</td>
</tr>
<tr>
<td>Escape speed</td>
<td>v_∞</td>
<td>6.18×10^{7}</td>
<td>cm s$^{-1}$</td>
</tr>
<tr>
<td>Upward mass flux in spicules</td>
<td>—</td>
<td>1.6×10^{-9}</td>
<td>g cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Vertically integrated atmospheric density</td>
<td>—</td>
<td>4.28</td>
<td>g cm$^{-2}$</td>
</tr>
<tr>
<td>Sunspot magnetic field strength</td>
<td>B_{max}</td>
<td>2500–3500</td>
<td>G</td>
</tr>
<tr>
<td>Surface effective temperature</td>
<td>T_0</td>
<td>5770</td>
<td>K</td>
</tr>
<tr>
<td>Radiant power</td>
<td>\mathcal{L}_\odot</td>
<td>3.83×10^{33}</td>
<td>erg s$^{-1}$</td>
</tr>
<tr>
<td>Radiant flux density</td>
<td>\mathcal{F}</td>
<td>6.28×10^{10}</td>
<td>erg cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Optical depth at 500 nm, measured</td>
<td>τ_5</td>
<td>0.99</td>
<td>—</td>
</tr>
<tr>
<td>Astronomical unit (radius of earth’s orbit)</td>
<td>AU</td>
<td>1.50×10^{13}</td>
<td>cm</td>
</tr>
<tr>
<td>Solar constant (intensity at 1 AU)</td>
<td>f</td>
<td>1.36×10^{6}</td>
<td>erg cm$^{-2}$ s$^{-1}$</td>
</tr>
</tbody>
</table>

Chromosphere and Corona

<table>
<thead>
<tr>
<th>Parameter (Units)</th>
<th>Quiet Sun</th>
<th>Coronal Hole</th>
<th>Active Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromospheric radiation losses (erg cm$^{-2}$ s$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low chromosphere</td>
<td>2×10^{6}</td>
<td>2×10^{6}</td>
<td>$\gtrsim 10^{7}$</td>
</tr>
<tr>
<td>Middle chromosphere</td>
<td>2×10^{6}</td>
<td>2×10^{6}</td>
<td>10^{7}</td>
</tr>
<tr>
<td>Upper chromosphere</td>
<td>3×10^{5}</td>
<td>3×10^{5}</td>
<td>2×10^{6}</td>
</tr>
<tr>
<td>Total</td>
<td>4×10^{6}</td>
<td>4×10^{6}</td>
<td>$\gtrsim 2 \times 10^{7}$</td>
</tr>
<tr>
<td>Transition layer pressure (dyne cm$^{-2}$)</td>
<td>0.2</td>
<td>0.07</td>
<td>2</td>
</tr>
<tr>
<td>Coronal temperature (K) at 1.1 R_\odot</td>
<td>1.1–1.6×10^{6}</td>
<td>10^{6}</td>
<td>2.5×10^{6}</td>
</tr>
<tr>
<td>Coronal energy losses (erg cm$^{-2}$ s$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduction</td>
<td>2×10^{5}</td>
<td>6×10^{4}</td>
<td>10^{5}–10^{7}</td>
</tr>
<tr>
<td>Radiation</td>
<td>10^{5}</td>
<td>10^{4}</td>
<td>5×10^{6}</td>
</tr>
<tr>
<td>Solar Wind</td>
<td>$\lesssim 5 \times 10^{4}$</td>
<td>7×10^{5}</td>
<td>$< 10^{5}$</td>
</tr>
<tr>
<td>Total</td>
<td>3×10^{5}</td>
<td>8×10^{5}</td>
<td>10^{7}</td>
</tr>
<tr>
<td>Solar wind mass loss (g cm$^{-2}$ s$^{-1}$)</td>
<td>$\lesssim 2 \times 10^{-11}$</td>
<td>2×10^{-10}</td>
<td>$< 4 \times 10^{-11}$</td>
</tr>
</tbody>
</table>
THERMONUCLEAR FUSION

Natural abundance of isotopes:

- Hydrogen: \(n_D/n_H = 1.5 \times 10^{-4} \)
- Helium: \(n_{\text{He}^3}/n_{\text{He}^4} = 1.3 \times 10^{-6} \)
- Lithium: \(n_{\text{Li}^6}/n_{\text{Li}^7} = 0.08 \)

Mass ratios:

- \(m_e/m_D = 2.72 \times 10^{-4} = 1/3670 \)
- \((m_e/m_D)^{1/2} = 1.65 \times 10^{-2} = 1/60.6 \)
- \(m_e/m_T = 1.82 \times 10^{-4} = 1/5496 \)
- \((m_e/m_T)^{1/2} = 1.35 \times 10^{-2} = 1/74.1 \)

Absorbed radiation dose is measured in rads: \(1 \text{ rad} = 10^2 \text{ erg g}^{-1} \). The curie (abbreviated Ci) is a measure of radioactivity: \(1 \text{ curie} = 3.7 \times 10^{10} \text{ counts sec}^{-1} \).

Fusion reactions (branching ratios are correct for energies near the cross section peaks; a negative yield means the reaction is endothermic):

1. \(\text{D} + \text{D} \rightarrow 50\% \text{T}(1.01 \text{ MeV}) + \text{p}(3.02 \text{ MeV}) \)
2. \(\text{D} + \text{T} \rightarrow 50\% \text{He}^3(0.82 \text{ MeV}) + \text{n}(2.45 \text{ MeV}) \)
3. \(\text{D} + \text{He}^3 \rightarrow \text{He}^4(3.6 \text{ MeV}) + \text{p}(14.7 \text{ MeV}) \)
4. \(\text{T} + \text{T} \rightarrow \text{He}^4 + 2\text{n} + 11.3 \text{ MeV} \)
5. \(\text{He}^3 + \text{T} \rightarrow 51\% \text{He}^4 + \text{p} + \text{n} + 12.1 \text{ MeV} \)
6. \(\text{p} + \text{Li}^6 \rightarrow \text{He}^4(4.8 \text{ MeV}) + \text{D}(9.5 \text{ MeV}) \)
7. \(\text{p} + \text{Li}^7 \rightarrow 20\% 2\text{He}^4 + 17.3 \text{ MeV} \)
8. \(\text{D} + \text{Li}^6 \rightarrow 80\% \text{Be}^7 + \text{n} - 1.6 \text{ MeV} \)
9. \(\text{p} + \text{B}^{11} \rightarrow 3\text{He}^4 + 8.7 \text{ MeV} \)
10. \(\text{n} + \text{Li}^6 \rightarrow \text{He}^4(2.1 \text{ MeV}) + \text{T}(2.7 \text{ MeV}) \)

The total cross section in barns (1 barn = \(10^{-24} \text{ cm}^2 \)) as a function of \(E \), the energy in keV of the incident particle [the first ion on the left side of Eqs. (1)–(5)], assuming the target ion at rest, can be fitted by

\[
\sigma_T(E) = \frac{A_5 + \left[(A_4 - A_3 E)^2 + 1 \right]^{-1} A_2}{E \left[\exp(A_1 E^{-1/2}) - 1 \right]}
\]
where the Duane coefficients A_j for the principal fusion reactions are as follows:

<table>
<thead>
<tr>
<th></th>
<th>D–D (1a)</th>
<th>D–D (1b)</th>
<th>D–T (2)</th>
<th>D–He(^3) (3)</th>
<th>T–T (4)</th>
<th>T–He(^3) (5a–c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>46.097</td>
<td>47.88</td>
<td>45.95</td>
<td>89.27</td>
<td>38.39</td>
<td>123.1</td>
</tr>
<tr>
<td>A_2</td>
<td>372</td>
<td>482</td>
<td>50200</td>
<td>25900</td>
<td>448</td>
<td>11250</td>
</tr>
<tr>
<td>A_3</td>
<td>4.36 × 10(^{-4})</td>
<td>3.08 × 10(^{-4})</td>
<td>1.368 × 10(^{-2})</td>
<td>3.98 × 10(^{-3})</td>
<td>1.02 × 10(^{-3})</td>
<td>0</td>
</tr>
<tr>
<td>A_4</td>
<td>1.220</td>
<td>1.177</td>
<td>1.076</td>
<td>1.297</td>
<td>2.09</td>
<td>0</td>
</tr>
<tr>
<td>A_5</td>
<td>0</td>
<td>0</td>
<td>409</td>
<td>647</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reaction rates $\bar{\sigma} \bar{v}$ (in cm\(^3\) sec\(^{-1}\), averaged over Maxwellian distributions:

<table>
<thead>
<tr>
<th>Temperature (keV)</th>
<th>D–D (1a + 1b)</th>
<th>D–T (2)</th>
<th>D–He(^3) (3)</th>
<th>T–T (4)</th>
<th>T–He(^3) (5a–c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.5 × 10(^{-22})</td>
<td>5.5 × 10(^{-21})</td>
<td>10(^{-26})</td>
<td>3.3 × 10(^{-22})</td>
<td>10(^{-28})</td>
</tr>
<tr>
<td>2.0</td>
<td>5.4 × 10(^{-21})</td>
<td>2.6 × 10(^{-19})</td>
<td>1.4 × 10(^{-23})</td>
<td>7.1 × 10(^{-21})</td>
<td>10(^{-25})</td>
</tr>
<tr>
<td>5.0</td>
<td>1.8 × 10(^{-19})</td>
<td>1.3 × 10(^{-17})</td>
<td>6.7 × 10(^{-21})</td>
<td>1.4 × 10(^{-19})</td>
<td>2.1 × 10(^{-22})</td>
</tr>
<tr>
<td>10.0</td>
<td>1.2 × 10(^{-18})</td>
<td>1.1 × 10(^{-16})</td>
<td>2.3 × 10(^{-19})</td>
<td>7.2 × 10(^{-19})</td>
<td>1.2 × 10(^{-20})</td>
</tr>
<tr>
<td>20.0</td>
<td>5.2 × 10(^{-18})</td>
<td>4.2 × 10(^{-16})</td>
<td>3.8 × 10(^{-18})</td>
<td>2.5 × 10(^{-18})</td>
<td>2.6 × 10(^{-19})</td>
</tr>
<tr>
<td>50.0</td>
<td>2.1 × 10(^{-17})</td>
<td>8.7 × 10(^{-16})</td>
<td>5.4 × 10(^{-17})</td>
<td>8.7 × 10(^{-18})</td>
<td>5.3 × 10(^{-18})</td>
</tr>
<tr>
<td>100.0</td>
<td>4.5 × 10(^{-17})</td>
<td>8.5 × 10(^{-16})</td>
<td>1.6 × 10(^{-16})</td>
<td>1.9 × 10(^{-17})</td>
<td>2.7 × 10(^{-17})</td>
</tr>
<tr>
<td>200.0</td>
<td>8.8 × 10(^{-17})</td>
<td>6.3 × 10(^{-16})</td>
<td>2.4 × 10(^{-16})</td>
<td>4.2 × 10(^{-17})</td>
<td>9.2 × 10(^{-17})</td>
</tr>
<tr>
<td>500.0</td>
<td>1.8 × 10(^{-16})</td>
<td>3.7 × 10(^{-16})</td>
<td>2.3 × 10(^{-16})</td>
<td>8.4 × 10(^{-17})</td>
<td>2.9 × 10(^{-16})</td>
</tr>
<tr>
<td>1000.0</td>
<td>2.2 × 10(^{-16})</td>
<td>2.7 × 10(^{-16})</td>
<td>1.8 × 10(^{-16})</td>
<td>8.0 × 10(^{-17})</td>
<td>5.2 × 10(^{-16})</td>
</tr>
</tbody>
</table>

For low energies ($T \ll 25$ keV) the data may be represented by

$$(\bar{\sigma} \bar{v})_{DD} = 2.33 \times 10^{-14} T^{-2/3} \exp(-18.76 T^{-1/3}) \text{ cm}^3 \text{ sec}^{-1};$$

$$(\bar{\sigma} \bar{v})_{DT} = 3.68 \times 10^{-12} T^{-2/3} \exp(-19.94 T^{-1/3}) \text{ cm}^3 \text{ sec}^{-1},$$

where T is measured in keV.

A three-parameter model has also been developed for fusion cross-sections of light nuclei.\(^{28b}\)

The power density released in the form of charged particles is

$P_{DD} = 3.3 \times 10^{-13} n_D^2 (\bar{\sigma} \bar{v})_{DD} \text{ watt cm}^{-3}$ (including the subsequent prompt D–T reaction only);

$P_{DT} = 5.6 \times 10^{-13} n_D n_T (\bar{\sigma} \bar{v})_{DT} \text{ watt cm}^{-3};$

$P_{DHe^3} = 2.9 \times 10^{-12} n_D n_{He^3} (\bar{\sigma} \bar{v})_{DHe^3} \text{ watt cm}^{-3}.$
RELATIVISTIC ELECTRON BEAMS

Here $\gamma = (1 - \beta^2)^{-1/2}$ is the relativistic scaling factor; quantities in analytic formulas are expressed in SI or cgs units, as indicated; in numerical formulas, I is in amperes (A), B is in gauss (G), electron linear density N is in cm$^{-1}$, and temperature, voltage and energy are in MeV; $\beta_z = v_z/c$; k is Boltzmann’s constant.

Relativistic electron gyroradius:

$$r_e = \frac{mc^2}{eB} (\gamma^2 - 1)^{1/2} \text{ (cgs)} = 1.70 \times 10^3 (\gamma^2 - 1)^{1/2} B^{-1} \text{ cm}.$$

Relativistic electron energy:

$$W = mc^2 \gamma = 0.511 \gamma \text{ MeV}.$$

Bennett pinch condition:

$$I^2 = 2Nk(T_e + T_i)c^2 \text{ (cgs)} = 3.20 \times 10^{-4} N(T_e + T_i) \text{ A}^2.$$

Alfvén-Lawson limit:

$$I_A = (mc^3/e)\beta_z \gamma \text{ (cgs)} = (4\pi mc/\mu_0 e)\beta_z \gamma \text{ (SI)} = 1.70 \times 10^4 \beta_z \gamma \text{ A}.$$

The ratio of net current to I_A is

$$\frac{I}{I_A} = \frac{\nu}{\gamma}.$$

Here $\nu = Nr_e$ is the Budker number, where $r_e = e^2/mc^2 = 2.82 \times 10^{-13} \text{ cm}$ is the classical electron radius. Beam electron number density is

$$n_b = 2.08 \times 10^8 J \beta^{-1} \text{ cm}^{-3},$$

where J is the current density in A cm$^{-2}$. For a uniform beam of radius a (in cm),

$$n_b = 6.63 \times 10^7 Ia^{-2} \beta^{-1} \text{ cm}^{-3},$$

and

$$\frac{2r_e}{a} = \frac{\nu}{\gamma}.$$
Child's law: (non-relativistic) space-charge-limited current density between parallel plates with voltage drop \(V \) (in MV) and separation \(d \) (in cm) is

\[
J = 2.34 \times 10^3 V^{3/2} d^{-2} \text{ A cm}^{-2}.
\]

The saturated parapotential current (magnetically self-limited flow along equipotentials in pinched diodes and transmission lines) is

\[
I_p = 8.5 \times 10^3 G \gamma \ln \left[\gamma + (\gamma^2 - 1)^{1/2} \right] \text{ A},
\]

where \(G \) is a geometrical factor depending on the diode structure:

- for parallel plane cathode and anode of width \(w \), separation \(d \):
 \[
 G = \frac{w}{2\pi d}
 \]
- for cylinders of radii \(R_1 \) (inner) and \(R_2 \) (outer):
 \[
 G = \left(\ln \frac{R_2}{R_1} \right)^{-1}
 \]
- for conical cathode of radius \(R_c \), maximum separation \(d_0 \) (at \(r = R_c \)) from plane anode:
 \[
 G = \frac{R_c}{d_0}
 \]

For \(\beta \to 0 (\gamma \to 1) \), both \(I_A \) and \(I_p \) vanish.

The condition for a longitudinal magnetic field \(B_z \) to suppress filamentation in a beam of current density \(J \) (in A cm\(^{-2}\)) is

\[
B_z > 47 \beta_z (J \gamma)^{1/2} \text{ G}.
\]

Voltage registered by Rogowski coil of minor cross-sectional area \(A \), \(n \) turns, major radius \(a \), inductance \(L \), external resistance \(R \) and capacitance \(C \) (all in SI):

- externally integrated
 \[
 V = \left(1/R C \right)(nA\mu_0 I/2\pi a);
 \]
- self-integrating
 \[
 V = \left(R/L \right)(nA\mu_0 I/2\pi a) = RI/n.
 \]

X-ray production, target with average atomic number \(Z \) (\(V \lesssim 5 \text{ MeV} \)):

\[
\eta \equiv \text{x-ray power/beam power} = 7 \times 10^{-4} Z V.
\]

X-ray dose at 1 meter generated by an e-beam depositing total charge \(Q \) coulombs while \(V \geq 0.84V_{\text{max}} \) in material with charge state \(Z \):

\[
D = 150 V_{\text{max}}^{2.8} Q Z^{1/2} \text{ rads}.
\]
BEAM INSTABILITIES

<table>
<thead>
<tr>
<th>Name</th>
<th>Conditions</th>
<th>Saturation Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron-electron</td>
<td>$V_d > \bar{V}_{ej}, \ j = 1, 2$</td>
<td>Electron trapping until $\bar{V}_{ej} \sim V_d$</td>
</tr>
<tr>
<td>Buneman</td>
<td>$V_d > (M/m)^{1/3} \bar{V}_i$, $V_d > \bar{V}_e$</td>
<td>Electron trapping until $\bar{V}_e \sim V_d$</td>
</tr>
<tr>
<td>Beam-plasma</td>
<td>$V_b > (n_p/n_b)^{1/3} \bar{V}_b$</td>
<td>Trapping of beam electrons</td>
</tr>
<tr>
<td>Weak beam-plasma</td>
<td>$V_b < (n_p/n_b)^{1/3} \bar{V}_b$</td>
<td>Quasilinear or nonlinear (mode coupling)</td>
</tr>
<tr>
<td>Beam-plasma (hot-electron)</td>
<td>$\bar{V}_e > V_b > \bar{V}_b$</td>
<td>Quasilinear or nonlinear</td>
</tr>
<tr>
<td>Ion acoustic</td>
<td>$T_e \gg T_i, \ V_d \gg C_s$</td>
<td>Quasilinear, ion tail formation, nonlinear scattering, or resonance broadening.</td>
</tr>
<tr>
<td>Anisotropic temperature (hydro)</td>
<td>$T_{e\perp} > 2T_{e\parallel}$</td>
<td>Isotropization</td>
</tr>
<tr>
<td>Ion cyclotron</td>
<td>$V_d > 20\bar{V}_i$ (for $T_e \approx T_i$)</td>
<td>Ion heating</td>
</tr>
<tr>
<td>Beam-cyclotron (hydro)</td>
<td>$V_d > C_s$</td>
<td>Resonance broadening</td>
</tr>
<tr>
<td>Modified two-stream (hydro)</td>
<td>$V_d < (1 + \beta)^{1/2}V_A$, $V_d > C_s$</td>
<td>Trapping</td>
</tr>
<tr>
<td>Ion-ion (equal beams)</td>
<td>$U < 2(1 + \beta)^{1/2}V_A$</td>
<td>Ion trapping</td>
</tr>
<tr>
<td>Ion-ion (equal beams)</td>
<td>$U < 2C_s$</td>
<td>Ion trapping</td>
</tr>
</tbody>
</table>

For nomenclature, see p. 50.
<table>
<thead>
<tr>
<th>Name</th>
<th>Parameters of Most Unstable Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth Rate</td>
</tr>
<tr>
<td>Electron-electron</td>
<td>$\frac{1}{2}\omega_e$</td>
</tr>
<tr>
<td>Buneman</td>
<td>$0.7\left(\frac{m}{M}\right)^{1/3}\omega_e$</td>
</tr>
<tr>
<td>Beam-plasma</td>
<td>$0.7\left(\frac{n_b}{n_p}\right)^{1/3}\omega_e$</td>
</tr>
<tr>
<td>Weak beam-plasma</td>
<td>$\frac{n_b}{2n_p}\left(\frac{V_b}{V_e}\right)^2\omega_e$</td>
</tr>
<tr>
<td>Beam-plasma (hot-electron)</td>
<td>$\left(\frac{n_b}{n_p}\right)^{1/2}\frac{V_b}{V_e}\omega_e$</td>
</tr>
<tr>
<td>Ion acoustic</td>
<td>$\left(\frac{m}{M}\right)^{1/2}\omega_i$</td>
</tr>
<tr>
<td>Anisotropic</td>
<td>Ω_e</td>
</tr>
<tr>
<td>temperature (hydro)</td>
<td></td>
</tr>
<tr>
<td>Ion cyclotron</td>
<td>$0.1\Omega_i$</td>
</tr>
<tr>
<td>Beam-cyclotron (hydro)</td>
<td>$0.7\Omega_e$</td>
</tr>
<tr>
<td>Modified two-stream (hydro)</td>
<td>$\frac{1}{2}\Omega_H$</td>
</tr>
<tr>
<td>Ion-ion (equal beams)</td>
<td>$0.4\Omega_H$</td>
</tr>
<tr>
<td>Ion-ion (equal beams)</td>
<td>$0.4\omega_i$</td>
</tr>
</tbody>
</table>

For nomenclature, see p. 50.
In the preceding tables, subscripts \(e, i, d, b, p \) stand for “electron,” “ion,” “drift,” “beam,” and “plasma,” respectively. Thermal velocities are denoted by a bar. In addition, the following are used:

- \(m \): electron mass
- \(M \): ion mass
- \(V \): velocity
- \(T \): temperature
- \(n_e, n_i \): number density
- \(n \): harmonic number
- \(C_s = (T_e/M)^{1/2} \): ion sound speed
- \(\omega_e, \omega_i \): plasma frequency
- \(\lambda_D \): Debye length
- \(r_e, r_i \): gyroradius
- \(\beta \): plasma/magnetic energy density ratio
- \(V_A \): Alfvén speed
- \(\Omega_e, \Omega_i \): gyrofrequency
- \(\Omega_H \): hybrid gyrofrequency
- \(\Omega_H^2 = \Omega_e \Omega_i \)
- \(U \): relative drift velocity of two ion species
LASERS

System Parameters

Efficiencies and power levels are approximate.\(^{31}\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Wavelength (µm)</th>
<th>Efficiency</th>
<th>Power levels available (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>CO₂</td>
<td>10.6</td>
<td>0.01–0.02 (pulsed)</td>
<td>> 2 \times 10^{13}</td>
</tr>
<tr>
<td>CO</td>
<td>5</td>
<td>0.4</td>
<td>> 10^9</td>
</tr>
<tr>
<td>Holmium</td>
<td>2.06</td>
<td>0.03(^{†})–0.1(^{‡})</td>
<td>> 10^7</td>
</tr>
<tr>
<td>Iodine</td>
<td>1.315</td>
<td>0.003</td>
<td>3 \times 10^{12}</td>
</tr>
<tr>
<td>Nd-glass</td>
<td>1.06</td>
<td>–</td>
<td>1.25 \times 10^{15}</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>1.064</td>
<td>–</td>
<td>10^9</td>
</tr>
<tr>
<td>Nd:YLF</td>
<td>1.045, 1.54, 1.313</td>
<td>–</td>
<td>4 \times 10^8</td>
</tr>
<tr>
<td>Nd:YVO4</td>
<td>1.064</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Er:YAG</td>
<td>2.94</td>
<td>–</td>
<td>1.5 \times 10^5</td>
</tr>
<tr>
<td>*Color center</td>
<td>1–4</td>
<td>10^{-3}</td>
<td>5 \times 10^8</td>
</tr>
<tr>
<td>*Ti:Sapphire</td>
<td>0.7–1.5</td>
<td>0.4 \times \eta_p</td>
<td>10^{14}</td>
</tr>
<tr>
<td>Ruby</td>
<td>0.6943</td>
<td>< 10^{-3}</td>
<td>10^{10}</td>
</tr>
<tr>
<td>He-Ne</td>
<td>0.6328</td>
<td>10^{-4}</td>
<td>–</td>
</tr>
<tr>
<td>*Argon ion</td>
<td>0.45–0.60</td>
<td>10^{-3}</td>
<td>5 \times 10^4</td>
</tr>
<tr>
<td>*OPO</td>
<td>0.3–10</td>
<td>> 0.1 \times \eta_p</td>
<td>10^{10}</td>
</tr>
<tr>
<td>N₂</td>
<td>0.3371</td>
<td>0.001–0.05</td>
<td>10^{6}</td>
</tr>
<tr>
<td>*Dye</td>
<td>0.3–1.1</td>
<td>10^{-3}</td>
<td>5 \times 10^7</td>
</tr>
<tr>
<td>Kr-F</td>
<td>0.26</td>
<td>0.08</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Xenon</td>
<td>0.175</td>
<td>0.02</td>
<td>> 10^8</td>
</tr>
<tr>
<td>Ytterbium fiber</td>
<td>1.05–1.1</td>
<td>0.55</td>
<td>5 \times 10^7</td>
</tr>
<tr>
<td>Erbium fiber</td>
<td>1.534</td>
<td>–</td>
<td>7 \times 10^6</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>0.375–1.9</td>
<td>> 0.5</td>
<td>3 \times 10^9</td>
</tr>
</tbody>
</table>

*Tunable sources \(^{†}\)lamp-driven \(^{‡}\)diode-driven

Nd stands for Neodymium; Er stands for Erbium; Ti stands for Titanium; YAG stands for Yttrium–Aluminum Garnet; YLF stands for Yttrium Lithium Fluoride; YVO5 stands for Yttrium Vanadate; OPO for Optical Parametric Oscillator; \(\eta_p\) is pump laser efficiency.
An e-m wave with $k \parallel B$ has an index of refraction given by
\[n_{\pm} = \left[1 - \omega_p^2/\omega(\omega \mp \omega_{ce})\right]^{1/2}, \]
where \pm refers to the helicity. The rate of change of polarization angle θ as a function of displacement s (Faraday rotation) is given by
\[\frac{d\theta}{ds} = (k/2)(n_- - n_+) = 2.36 \times 10^4 NBf^{-2} \text{ cm}^{-1}, \]
where N is the electron number density, B is the field strength, and f is the wave frequency, all in cgs.

The quiver velocity of an electron in an e-m field of angular frequency ω is
\[v_0 = eE_{\text{max}}/m\omega = 25.6I^{1/2}\lambda_0 \text{ cm sec}^{-1} \]
in terms of the laser flux $I = cE_{\text{max}}^2/8\pi$, with I in watt/cm2, laser wavelength λ_0 in μm. The ratio of quiver energy to thermal energy is
\[W_{\text{qu}}/W_{\text{th}} = m_e v_0^2/2kT = 1.81 \times 10^{-13} \lambda_0^2 I/T, \]
where T is given in eV. For example, if $I = 10^{15}$ W cm$^{-2}$, $\lambda_0 = 1 \mu$m, $T = 2$ keV, then $W_{\text{qu}}/W_{\text{th}} \approx 0.1$.

Pondermotive force:
\[\mathcal{F} = N\nabla\langle E^2 \rangle/8\pi N_c, \]
where
\[N_c = 1.1 \times 10^{21} \lambda_0^{-2} \text{cm}^{-3}. \]

For uniform illumination of a lens with f-number F, the diameter d at focus (85% of the energy) and the depth of focus l (distance to first zero in intensity) are given by
\[d \approx 2.44F\lambda\theta/\theta_{DL} \quad \text{and} \quad l \approx \pm 2F^2\lambda\theta/\theta_{DL}. \]
Here θ is the beam divergence containing 85% of energy and θ_{DL} is the diffraction-limited divergence:
\[\theta_{DL} = 2.44\lambda/b, \]
where b is the aperture. These formulas are modified for nonuniform (such as Gaussian) illumination of the lens or for pathological laser profiles.
Energies and temperatures are in eV; all other units are cgs except where noted. Z is the charge state ($Z = 0$ refers to a neutral atom); the subscript e labels electrons. N refers to number density, n to principal quantum number. Asterisk superscripts on level population densities denote local thermodynamic equilibrium (LTE) values. Thus N_n^* is the LTE number density of atoms (or ions) in level n.

Characteristic atomic collision cross section:

(1) \[\pi a_0^2 = 8.80 \times 10^{-17} \text{ cm}^2. \]

Binding energy of outer electron in level labelled by quantum numbers n, l:

(2) \[E_Z^Z(n, l) = -\frac{Z^2 E_H^H}{(n - \Delta l)^2}, \]

where $E_H^H = 13.6 \text{ eV}$ is the hydrogen ionization energy and $\Delta l = 0.75l^{-5}$, $l \gtrsim 5$, is the quantum defect.

Excitation and Decay

Cross section (Bethe approximation) for electron excitation by dipole allowed transition $m \rightarrow n$ (Refs. 32, 33):

(3) \[\sigma_{mn} = 2.36 \times 10^{-13} \frac{f_{mn} g(n, m)}{\epsilon \Delta E_{nm}} \text{ cm}^2, \]

where f_{mn} is the oscillator strength, $g(n, m)$ is the Gaunt factor, ϵ is the incident electron energy, and $\Delta E_{nm} = E_n - E_m$.

Electron excitation rate averaged over Maxwellian velocity distribution, $X_{mn} = N_e \langle \sigma_{mn} v \rangle$ (Refs. 34, 35):

(4) \[X_{mn} = 1.6 \times 10^{-5} \frac{f_{mn} \langle g(n, m) \rangle N_e}{\Delta E_{nm} T_e^{1/2}} \exp \left(-\frac{\Delta E_{nm}}{T_e} \right) \text{ sec}^{-1}, \]

where $\langle g(n, m) \rangle$ denotes the thermal averaged Gaunt factor (generally ~ 1 for atoms, ~ 0.2 for ions).
Rate for electron collisional deexcitation:

\[Y_{nm} = \left(\frac{N_m^*}{N_n^*} \right) X_{mn}. \]

Here \(N_m^*/N_n^* = (g_m/g_n) \exp(\Delta E_{nm}/T_e) \) is the Boltzmann relation for level population densities, where \(g_n \) is the statistical weight of level \(n \).

Rate for spontaneous decay \(n \rightarrow m \) (Einstein \(A \) coefficient):

\[A_{nm} = 4.3 \times 10^7 (g_m/g_n) f_{mn} \left(\frac{\Delta E_{nm}}{T_e} \right)^2 \sec^{-1}. \]

Intensity emitted per unit volume from the transition \(n \rightarrow m \) in an optically thin plasma:

\[I_{nm} = 1.6 \times 10^{-19} A_{nm} N_n \Delta E_{nm} \text{ watt/cm}^3. \]

Condition for steady state in a corona model:

\[N_0 N_e \langle \sigma_0 n \rangle = N_n A_{n0}, \]

where the ground state is labelled by a zero subscript.

Hence for a transition \(n \rightarrow m \) in ions, where \(\langle g(n, 0) \rangle \approx 0.2 \),

\[I_{nm} = 5.1 \times 10^{-25} \frac{f_{nm} g_m N_e N_0}{g_0 T_e^{1/2}} \left(\frac{\Delta E_{nm}}{\Delta E_{n0}} \right)^3 \exp \left(- \frac{\Delta E_{n0}}{T_e} \right) \text{ watt/cm}^3. \]

Ionization and Recombination

In a general time-dependent situation the number density of the charge state \(Z \) satisfies

\[\frac{dN(Z)}{dt} = N_e \left[-S(Z)N(Z) - \alpha(Z)N(Z) \
+ S(Z - 1)N(Z - 1) + \alpha(Z + 1)N(Z + 1) \right]. \]

Here \(S(aZ) \) is the ionization rate. The recombination rate \(\alpha(Z) \) has the form \(\alpha(Z) = \alpha_r(Z) + N_e \alpha_3(Z) \), where \(\alpha_r \) and \(\alpha_3 \) are the radiative and three-body recombination rates, respectively.
Classical ionization cross-section36 for any atomic shell \(j\)

\begin{equation}
\sigma_i = 6 \times 10^{-14} b_j g_j(x)/U_j^2 \text{ cm}^2.
\end{equation}

Here \(b_j\) is the number of shell electrons; \(U_j\) is the binding energy of the ejected electron; \(x = \epsilon/U_j\), where \(\epsilon\) is the incident electron energy; and \(g\) is a universal function with a minimum value \(g_{\text{min}} \approx 0.2\) at \(x \approx 4\).

Ionization from ion ground state, averaged over Maxwellian electron distribution, for \(0.02 \lesssim T_e/E_{\infty}^Z \lesssim 100\) (Ref. 35):

\begin{equation}
S(Z) = 10^{-5} \frac{(T_e/E_{\infty}^Z)^{1/2}}{(E_{\infty}^Z)^{3/2}(6.0 + T_e/E_{\infty}^Z)} \exp \left(-\frac{E_{\infty}^Z}{T_e}\right) \text{ cm}^3/\text{sec},
\end{equation}

where \(E_{\infty}^Z\) is the ionization energy.

Electron-ion radiative recombination rate \((e + N(Z) \rightarrow N(Z-1) + h\nu)\) for \(T_e/Z^2 \lesssim 400\) eV (Ref. 37):

\begin{equation}
\alpha_r(Z) = 5.2 \times 10^{-14} Z \left(\frac{E_{\infty}^Z}{T_e}\right)^{1/2} \left[0.43 + \frac{1}{2} \ln(E_{\infty}^Z/T_e) + 0.469(E_{\infty}^Z/T_e)^{-1/3}\right] \text{ cm}^3/\text{sec}.
\end{equation}

For \(1\) eV < \(T_e/Z^2\) < 15 eV, this becomes approximately35

\begin{equation}
\alpha_r(Z) = 2.7 \times 10^{-13} Z^2 T_e^{-1/2} \text{ cm}^3/\text{sec}.
\end{equation}

Collisional (three-body) recombination rate for singly ionized plasma:38

\begin{equation}
\alpha_3 = 8.75 \times 10^{-27} T_e^{-4.5} \text{ cm}^6/\text{sec}.
\end{equation}

Photoionization cross section for ions in level \(n, l\) (short-wavelength limit):

\begin{equation}
\sigma_{\text{ph}}(n, l) = 1.64 \times 10^{-16} Z^5/n^3 K^{7+2l} \text{ cm}^2,
\end{equation}

where \(K\) is the wavenumber in Rydbergs (1 Rydberg = 1.0974 \times 10^5 \text{ cm}^{-1}).
Ionization Equilibrium Models

Saha equilibrium:

\[
\frac{N_e N_1^*(Z)}{N_n^*(Z-1)} = \frac{6.0 \times 10^{21} g_n^Z T_e^{3/2}}{g_n^{Z-1}} \exp \left(-\frac{E_{\infty}^Z(n,l)}{T_e} \right) \text{cm}^{-3},
\]

where \(g_n^Z \) is the statistical weight for level \(n \) of charge state \(Z \) and \(E_{\infty}^Z(n,l) \) is the ionization energy of the neutral atom initially in level \((n,l)\), given by Eq. (2).

In a steady state at high electron density,

\[
\frac{N_e N^*(Z)}{N^*(Z-1)} = \frac{S(Z-1)}{\alpha_3},
\]

a function only of \(T \).

Conditions for LTE:

(a) Collisional and radiative excitation rates for a level \(n \) must satisfy

\[
Y_{nm} \gtrsim 10 A_{nm}.
\]

(b) Electron density must satisfy

\[
N_e \gtrsim 7 \times 10^{18} Z^n T^{-17/2} (E_{\infty}^Z)^{1/2} \text{cm}^{-3}.
\]

Steady state condition in corona model:

\[
\frac{N(Z-1)}{N(Z)} = \frac{\alpha_r}{S(Z-1)}.
\]

Corona model is applicable if

\[
10^{12} t_I^{-1} < N_e < 10^{16} T_e^{7/2} \text{cm}^{-3},
\]

where \(t_I \) is the ionization time.
Radiation

N. B. Energies and temperatures are in eV; all other quantities are in cgs units except where noted. Z is the charge state ($Z = 0$ refers to a neutral atom); the subscript e labels electrons. N is number density.

Average radiative decay rate of a state with principal quantum number n is

$$A_n = \sum_{m<n} A_{nm} = 1.6 \times 10^{10} Z^4 n^{-9/2} \text{sec.}$$

Natural linewidth (ΔE in eV):

$$\Delta E \Delta t = h = 4.14 \times 10^{-15} \text{eV sec},$$

where Δt is the lifetime of the line.

Doppler width:

$$\Delta \lambda/\lambda = 7.7 \times 10^{-5} (T/\mu)^{1/2},$$

where μ is the mass of the emitting atom or ion scaled by the proton mass.

Optical depth for a Doppler-broadened line:

$$\tau = 3.52 \times 10^{-13} f_{nm} \lambda (M c^2 / kT)^{1/2} NL = 5.4 \times 10^{-9} f_{mn} \lambda (\mu / T)^{1/2} NL,$$

where f_{nm} is the absorption oscillator strength, λ is the wavelength, and L is the physical depth of the plasma; M, N, and T are the mass, number density, and temperature of the absorber; μ is M divided by the proton mass. Optically thin means $\tau < 1$.

Resonance absorption cross section at center of line:

$$\sigma_{\lambda=\lambda_c} = 5.6 \times 10^{-13} \lambda^2 / \Delta \lambda \text{cm}^2.$$

Wien displacement law (wavelength of maximum black-body emission):

$$\lambda_{\text{max}} = 2.50 \times 10^{-5} T^{-1} \text{cm}.$$

Radiation from the surface of a black body at temperature T:

$$W = 1.03 \times 10^5 T^4 \text{watt/cm}^2.$$
Bremsstrahlung from hydrogen-like plasma:\(^{(30)}\)

\[
P_{\text{Br}} = 1.69 \times 10^{-32} N_e T_e^{1/2} \sum \left[Z^2 N(Z) \right] \text{watt/cm}^3,
\]

where the sum is over all ionization states \(Z\).

Bremsstrahlung optical depth:\(^{(31)}\)

\[
\tau = 5.0 \times 10^{-38} N_e N_i Z^2 \bar{g} L T^{-7/2},
\]

where \(\bar{g} \approx 1.2\) is an average Gaunt factor and \(L\) is the physical path length.

Inverse bremsstrahlung absorption coefficient\(^{(32)}\) for radiation of angular frequency \(\omega\):

\[
\kappa = 3.1 \times 10^{-7} Z n_e^{-2} \ln \Lambda T^{-3/2} \omega^{-2} (1 - \omega_p^2/\omega^2)^{-1/2} \text{cm}^{-1};
\]

here \(\Lambda\) is the electron thermal velocity divided by \(V\), where \(V\) is the larger of \(\omega\) and \(\omega_p\) multiplied by the larger of \(Z e^2/kT\) and \(\hbar/(mkT)^{1/2}\).

Recombination (free-bound) radiation:

\[
P_r = 1.69 \times 10^{-32} N_e T_e^{1/2} \sum \left[Z^2 N(Z) \left(\frac{E^{Z-1}}{T_e} \right) \right] \text{watt/cm}^3.
\]

Cyclotron radiation\(^{(26)}\) in magnetic field \(B\):

\[
P_c = 6.21 \times 10^{-28} B^2 N_e T_e \text{watt/cm}^3.
\]

For \(N_e kT_e = N_i kT_i = B^2 / 16\pi\) (\(\beta = 1\), isothermal plasma),\(^{(26)}\)

\[
P_c = 5.00 \times 10^{-38} N_e^2 T_e^2 \text{watt/cm}^3.
\]

Cyclotron radiation energy loss \(e\)-folding time for a single electron:\(^{(41)}\)

\[
t_c \approx \frac{9.0 \times 10^8 B^{-2}}{2.5 + \gamma} \text{sec},
\]

where \(\gamma\) is the kinetic plus rest energy divided by the rest energy \(mc^2\).

Number of cyclotron harmonics\(^{(41)}\) trapped in a medium of finite depth \(L\):

\[
m_{tr} = (57\beta BL)^{1/6},
\]

where \(\beta = 8\pi N kT / B^2\).

Line radiation is given by summing Eq. (9) over all species in the plasma.
ATOMIC SPECTROSCOPY

Spectroscopic notation combines observational and theoretical elements. Observationally, spectral lines are grouped in series with line spacings which decrease toward the series limit. Every line can be related theoretically to a transition between two atomic states, each identified by its quantum numbers.

Ionization levels are indicated by roman numerals. Thus C I is unionized carbon, C II is singly ionized, etc. The state of a one-electron atom (hydrogen) or ion (He II, Li III, etc.) is specified by identifying the principal quantum number \(n = 1, 2, \ldots \), the orbital angular momentum \(l = 0, 1, \ldots, n - 1 \), and the spin angular momentum \(s = \pm \frac{1}{2} \). The total angular momentum \(j \) is the magnitude of the vector sum of \(l \) and \(s \), \(j = l \pm \frac{1}{2} \) \((j \geq \frac{1}{2})\). The letters \(s, p, d, f, g, h, i, k, l, \ldots \), respectively, are associated with angular momenta \(l = 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \). The atomic states of hydrogen and hydrogenic ions are degenerate: neglecting fine structure, their energies depend only on \(n \) according to

\[
E_n = -\frac{R_\infty h c Z^2 n^{-2}}{1 + m/M} = -\frac{Ry Z^2}{n^2},
\]

where \(h \) is Planck’s constant, \(c \) is the velocity of light, \(m \) is the electron mass, \(M \) and \(Z \) are the mass and charge state of the nucleus, and

\[R_\infty = 109,737 \text{ cm}^{-1}\]

is the Rydberg constant. If \(E_n \) is divided by \(hc \), the result is in wavenumber units. The energy associated with a transition \(m \rightarrow n \) is given by

\[
\Delta E_{mn} = Ry (1/m^2 - 1/n^2),
\]

with \(m < n \) \((m > n)\) for absorption \((\text{emission})\) lines.

For hydrogen and hydrogenic ions the series of lines belonging to the transitions \(m \rightarrow n \) have conventional names:

<table>
<thead>
<tr>
<th>Transition</th>
<th>1 → n</th>
<th>2 → n</th>
<th>3 → n</th>
<th>4 → n</th>
<th>5 → n</th>
<th>6 → n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Lyman</td>
<td>Balmer</td>
<td>Paschen</td>
<td>Brackett</td>
<td>Pfund</td>
<td>Humphreys</td>
</tr>
</tbody>
</table>

Successive lines in any series are denoted \(\alpha, \beta, \gamma, \) etc. Thus the transition \(1 \rightarrow 3 \) gives rise to the Lyman-\(\beta \) line. Relativistic effects, quantum electrodynamic effects \((\text{e.g., the Lamb shift})\), and interactions between the nuclear magnetic
moment and the magnetic field due to the electron produce small shifts and splittings, \(\lesssim 10^{-2} \text{ cm}^{-1} \); these last are called “hyperfine structure.”

In many-electron atoms the electrons are grouped in closed and open shells, with spectroscopic properties determined mainly by the outer shell. Shell energies depend primarily on \(n \); the shells corresponding to \(n = 1, 2, 3, \ldots \) are called \(K, L, M, \) etc. A shell is made up of subshells of different angular momenta, each labeled according to the values of \(n, l \), and the number of electrons it contains out of the maximum possible number, \(2(2l+1) \). For example, \(2p^5 \) indicates that there are 5 electrons in the subshell corresponding to \(l = 1 \) (denoted by \(p \)) and \(n = 2 \).

In the lighter elements the electrons fill up subshells within each shell in the order \(s, p, d, \) etc., and no shell acquires electrons until the lower shells are full. In the heavier elements this rule does not always hold. But if a particular subshell is filled in a noble gas, then the same subshell is filled in the atoms of all elements that come later in the periodic table. The ground state configurations of the noble gases are as follows:

- He: \(1s^2 \)
- Ne: \(1s^22s^22p^6 \)
- Ar: \(1s^22s^22p^63s^23p^6 \)
- Kr: \(1s^22s^22p^63s^23p^63d^{10}4s^24p^6 \)
- Xe: \(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6 \)
- Rn: \(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^65d^{10}6s^26p^6 \)

Alkali metals (Li, Na, K, etc.) resemble hydrogen; their transitions are described by giving \(n \) and \(l \) in the initial and final states for the single outer (valence) electron.

For general transitions in most atoms the atomic states are specified in terms of the parity \((−1)^{\Sigma_l i} \) and the magnitudes of the orbital angular momentum \(L = \Sigma l_i \), the spin \(S = \Sigma s_i \), and the total angular momentum \(J = L + S \), where all sums are carried out over the unfilled subshells (the filled ones sum to zero). If a magnetic field is present the projections \(M_L, M_S, \) and \(M \) of \(L, S, \) and \(J \) along the field are also needed. The quantum numbers satisfy \(|M_L| \leq L \leq \nu l, |M_S| \leq S \leq \nu/2, \) and \(|M| \leq J \leq L + S \), where \(\nu \) is the number of electrons in the unfilled subshell. Upper-case letters \(S, P, D, \) etc., stand for \(L = 0, 1, 2, \) etc., in analogy with the notation for a single electron. For example, the ground state of Cl is described by \(3p^{5^2}P^{3/2}_o \). The first part indicates that there are 5 electrons in the subshell corresponding to \(n = 3 \) and \(l = 1 \). (The closed inner subshells \(1s^22s^22p^63s^2 \), identical with the configuration of Mg, are usually omitted.) The symbol ‘P’ indicates that the angular momenta of the outer electrons combine to give \(L = 1 \). The prefix ‘2’ represents the value of the multiplicity \(2S + 1 \) (the number of states with nearly the same energy), which is equivalent to specifying \(S = \frac{1}{2} \). The subscript 3/2 is
the value of J. The superscript ‘o’ indicates that the state has odd parity; it
would be omitted if the state were even.

The notation for excited states is similar. For example, helium has a state $1s^2 2s^3S_1$ which lies 19.72 eV (159, 856 cm$^{-1}$) above the ground state $1s^2 1S_0$. But the two “terms” do not “combine” (transitions between them do not occur) because this would violate, e.g., the quantum-mechanical selection rule that the parity must change from odd to even or from even to odd. For electric dipole transitions (the only ones possible in the long-wavelength limit), other selection rules are that the value of l of only one electron can change, and only by $\Delta l = \pm 1$; $\Delta S = 0$; $\Delta L = \pm 1$ or 0; and $\Delta J = \pm 1$ or 0 (but $L = 0$ does not combine with $L = 0$ and $J = 0$ does not combine with $J = 0$). Transitions are possible between the helium ground state (which has $S = 0, L = 0, J = 0$, and even parity) and, e.g., the state $1s^2p^1P^o_1$ (with $S = 0, L = 1, J = 1$, odd parity, excitation energy 21.22 eV). These rules hold accurately only for light atoms in the absence of strong electric or magnetic fields. Transitions that obey the selection rules are called “allowed”; those that do not are called “forbidden.”

The amount of information needed to adequately characterize a state increases with the number of electrons; this is reflected in the notation. Thus $^{43}\text{O II}$ has an allowed transition between the states $2p^2 3p' ^2F_7/2$ and $2p^2(1D)3d' ^2F_7/2$ (and between the states obtained by changing J from 7/2 to 5/2 in either or both terms). Here both states have two electrons with $n = 2$ and $l = 1$; the closed subshells $1s^2 2s^2$ are not shown. The outer ($n = 3$) electron has $l = 1$ in the first state and $l = 2$ in the second. The prime indicates that if the outermost electron were removed by ionization, the resulting ion would not be in its lowest energy state. The expression $(1D)$ give the multiplicity and total angular momentum of the “parent” term, i.e., the subshell immediately below the valence subshell; this is understood to be the same in both states. (Grandparents, etc., sometimes have to be specified in heavier atoms and ions.) Another example is the allowed transition from $2p^2(3P)3p ^2P^o_{1/2}$ (or $^2P^o_{3/2}$) to $2p^2(1D)3d' ^2S_{1/2}$, in which there is a “spin flip” (from antiparallel to parallel) in the $n = 2, l = 1$ subshell, as well as changes from one state to the other in the value of l for the valence electron and in L.

The description of fine structure, Stark and Zeeman effects, spectra of highly ionized or heavy atoms, etc., is more complicated. The most important difference between optical and X-ray spectra is that the latter involve energy changes of the inner electrons rather than the outer ones; often several electrons participate.
COMPLEX (DUSTY) PLASMAS

Complex (dusty) plasmas (CDPs) may be regarded as a new and unusual state of matter. CDPs contain charged microparticles (dust grains) in addition to electrons, ions, and neutral gas. Electrostatic coupling between the grains can vary over a wide range, so that the states of CDPs can change from weakly coupled (gaseous) to crystalline. CDPs can be investigated at the kinetic level (individual particles are easily visualized and relevant time scales are accessible). CDPs are of interest as a non-Hamiltonian system of interacting particles and as a means to study generic fundamental physics of self-organization, pattern formation, phase transitions, and scaling. Their discovery has therefore opened new ways of precision investigations in many-particle physics.

Typical experimental dust properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain size (radius) a</td>
<td>$0.3 - 30 \mu m$</td>
</tr>
<tr>
<td>Mass m_d</td>
<td>$3 \times 10^{-7} - 3 \times 10^{-13} g$</td>
</tr>
<tr>
<td>Number density</td>
<td>$\Delta^{-3} \sim 10^3 - 10^7 \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>Temperature T_d</td>
<td>$3 \times 10^{-2} - 10^2 \text{ eV}$</td>
</tr>
</tbody>
</table>

Typical discharge (bulk) plasmas

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pressure p</td>
<td>$10^{-2} - 1 \text{ Torr}$</td>
</tr>
<tr>
<td>Electron temperature T_e</td>
<td>$3 - 10^2 \text{ eV}$</td>
</tr>
<tr>
<td>Ion temperature T_i</td>
<td>$10^8 - 10^{10} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>Screening length λ_D</td>
<td>$20 - 200 \mu m$</td>
</tr>
<tr>
<td>Charge fluctuation frequency ω_{pi}</td>
<td>$2 \times 10^6 - 2 \times 10^7 \text{ s}^{-1}$</td>
</tr>
</tbody>
</table>

Dimensionless

<table>
<thead>
<tr>
<th>Dimensionless Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Havnes parameter P</td>
<td>$</td>
</tr>
<tr>
<td>Normalized charge z</td>
<td>$</td>
</tr>
<tr>
<td>Dust-dust scattering parameter β_d</td>
<td>$Z^2e^2/kT_d\lambda_D$</td>
</tr>
<tr>
<td>Dust-plasma scattering parameter $\beta_{e,i}$</td>
<td>$</td>
</tr>
<tr>
<td>Coupling parameter Γ</td>
<td>$(Z^2e^2/kT_D\Delta)\exp(-\Delta/\lambda_D)$</td>
</tr>
<tr>
<td>Lattice parameter κ</td>
<td>Δ/λ_D</td>
</tr>
<tr>
<td>Particle parameter α</td>
<td>a/Δ</td>
</tr>
<tr>
<td>Lattice magnetization parameter μ</td>
<td>Δ/r_d</td>
</tr>
</tbody>
</table>

Typical experimental values: $P \sim 10^{-4} - 10^2, z \simeq 2 - 4 (Z \sim 10^3 - 10^5$ electron charges), $\Gamma < 10^3, \kappa \sim 0.3 - 10, \alpha \sim 10^{-4} - 3 \times 10^{-2}, \mu < 1$

Frequencies

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust plasma frequency</td>
<td>$\omega_{pd} = (4\pi Z^2e^2n_d/m_d)^{1/2}$</td>
</tr>
<tr>
<td></td>
<td>$\simeq (</td>
</tr>
<tr>
<td>Charge fluctuation frequency</td>
<td>$\omega_{ch} \simeq \frac{1+z}{\sqrt{2\pi}}(a/\lambda_D)\omega_{pi}$</td>
</tr>
</tbody>
</table>
dust-gas friction rate \[\nu_{nd} \approx 10a^2 p/m_d v_{T_n} \]
dust gyrofrequency \[\omega_{cd} = ZeB/m_d c \]

Velocities
- dust thermal velocity \[v_{Td} = (kT_d/m_d)^{1/2} \equiv [T_d/m_d]^{1/2} v_{Ti} \]
- dust acoustic wave velocity \[C_{DA} = \omega_{pd} \lambda_D \]
 \[\approx (ZeB/m_d) v_{Td}^{1/2} v_{Ti} \]
- dust Alfvén wave velocity \[v_{Ad} = B/(4\pi n_d m_d)^{1/2} \]
- dust-acoustic Mach number \[V/C_{DA} \]
- dust magnetic Mach number \[V/v_{Ad} \]
- dust lattice (acoustic) wave velocity \[C_{DL} = \omega_{pd} \lambda_D F_{l,t}(\kappa) \]

The range of the dust-lattice wavenumbers is \(K \Delta \ll \pi \) The functions \(F_{l,t}(\kappa) \) for longitudinal and transverse waves can be approximated\(^{44,45}\) with accuracy \(<1\%\) in the range \(\kappa \leq 5 \):

\[
F_l \approx 2.70\kappa^{1/2}(1 - 0.096\kappa - 0.004\kappa^2), \quad F_t \approx 0.51\kappa(1 - 0.039\kappa^2),
\]

Lengths
- frictional dissipation length \[L_\nu = v_{Td}/\nu_{nd} \]
- dust Coulomb radius \[R_{Ce,i} = |Z| e^2/kT_{e,i} \]
- dust gyroradius \[r_d = v_{Td}/\omega_{cd} \]

Grain Charging

The charge evolution equation is \(d|Z|/dt = I_i - I_e \). From orbital motion limited (OML) theory\(^{46}\) in the collisionless limit \(l_{en(in)} \gg \lambda_D \gg a \):

\[
I_e = \sqrt{8\pi a^2} n_e v_{Te} \exp(-z), \quad I_i = \sqrt{8\pi a^2} n_i v_{Ti} \left(1 + \frac{T_e}{T_i} z\right).
\]

Grains are charged negatively. The grain charge can vary in response to spatial and temporal variations of the plasma. Charge fluctuations are always present, with frequency \(\omega_{ch} \). Other charging mechanisms are photoemission, secondary emission, thermionic emission, field emission, etc. Charged dust grains change the plasma composition, keeping quasineutrality. A measure of this is the Havnes parameter \(P = |Z|n_d/n_e \). The balance of \(I_e \) and \(I_i \) yields

\[
\exp(-z) = \left(\frac{m_i T_i}{m_e T_e}\right)^{1/2} \left(1 + \frac{T_e}{T_i} z\right) [1 + P(z)]
\]

63
When the relative charge density of dust is large, $P \gg 1$, the grain charge Z monotonically decreases.

Forces and momentum transfer

In addition to the usual electromagnetic forces, grains in complex plasmas are also subject to: gravity force $F_g = m_d g$; thermophoretic force

$$F_{th} = -\frac{4\sqrt{2\pi}}{15}(a^2/v_{Tn})\kappa_n \nabla T_n$$

(where κ_n is the coefficient of gas thermal conductivity); forces associated with the momentum transfer from other species, $F_\alpha = -m_d \nu_\alpha d \mathbf{V}_\alpha$, i.e., neutral, ion, and electron drag. For collisions between charged particles, two limiting cases are distinguished by the magnitude of the scattering parameter β_α. When $\beta_\alpha \ll 1$ the result is independent of the sign of the potential. When $\beta_\alpha \gg 1$, the results for repulsive and attractive interaction potentials are different. For typical complex plasmas the hierarchy of scattering parameters is $\beta_e (\sim 0.01 - 0.3) \ll \beta_i (\sim 1 - 30) \ll \beta_d (\sim 10^3 - 3 \times 10^4)$. The generic expressions for different types of collisions are

$$\nu_\alpha d = (4\sqrt{2\pi}/3)(m_\alpha/m_d)a^2 n_\alpha v_{T\alpha} \Phi_\alpha d$$

Electron-dust collisions

$$\Phi_{ed} \simeq \frac{1}{2} z^2 \Lambda_{ed} \quad \beta_e \ll 1$$

Ion-dust collisions

$$\Phi_{id} = \begin{cases} \frac{1}{2} z^2 (T_e/T_i)^2 \Lambda_{id} & \beta_i < 5 \\ 2(\lambda_D/a)^2 (\ln^2 \beta_i + 2 \ln \beta_i + 2), & \beta_i > 13 \end{cases}$$

Dust-dust collisions

$$\Phi_{dd} = \begin{cases} z_d^2 \Lambda_{dd} & \beta_d \ll 1 \\ (\lambda_D/a)^2 [\ln 4\beta_d - \ln \ln 4\beta_d], & \beta_d \gg 1 \end{cases}$$

where $z_d \equiv Z^2 e^2/akT_d$.

For $\nu_{dd} \sim \nu_{nd}$ the complex plasma is in a two-phase state, and for $\nu_{nd} \gg \nu_{dd}$ we have merely tracer particles (dust-neutral gas interaction dominates). The momentum transfer cross section is proportional to the Coulomb logarithm $\Lambda_{\alpha d}$ when the Coulomb scattering theory is applicable. It is determined by integration over the impact parameters, from ρ_{\min} to ρ_{\max}. ρ_{\min} is due to finite grain size and is given by OML theory. $\rho_{\max} = \lambda_D$ for repulsive interaction (applicable for $\beta_\alpha \ll 1$), and $\rho_{\max} = \lambda_D (1 + 2\beta_\alpha)^{1/2}$ for attractive interaction (applicable up to $\beta_\alpha < 5$).
For repulsive interaction (electron-dust and dust-dust)

\[\Lambda_{\alpha d} = z_\alpha \int_0^\infty e^{-z_\alpha x} \ln[1 + 4(\lambda_D/a_\alpha)^2 x^2] dx - 2z_\alpha \int_1^\infty e^{-z_\alpha x} \ln(2x - 1) dx, \]

where \(z_e = z, a_e = a, \) and \(a_d = 2a. \)

For ion-dust (attraction)

\[\Lambda_{id} \simeq z \int_0^\infty e^{-z x} \ln \left[\frac{1 + 2(T_i/T_e)(\lambda_D/a)x}{1 + 2(T_i/T_e)x} \right] dx. \]

For \(\nu_{dd} \gg \nu_{nd} \) the complex plasma behaves like a one phase system (dust-dust interaction dominates).

Phase Diagram of Complex Plasmas

The figure below represents different “phase states” of CDPs as functions of the electrostatic coupling parameter \(\Gamma \) and \(\kappa \) or \(\alpha \), respectively. The vertical dashed line at \(\kappa = 1 \) conditionally divides the system into Coulomb and Yukawa parts. With respect to the usual plasma phase, in the diagram below the complex plasmas are “located” mostly in the strong coupling regime (equivalent to the top left corner).

Regions I (V) represent Coulomb (Yukawa) crystals, the crystallization condition is \(\Gamma > 106(1 + \kappa + \kappa^2/2)^{-1} \). Regions II (VI) are for Coulomb (Yukawa) non-ideal plasmas – the characteristic range of dust-dust interaction (in terms of the momentum transfer) is larger than the intergrain distance (in terms of the Wigner-Seitz radius), \((\sigma/\pi)^{1/2} > (4\pi/3)^{-1/3} \Delta \), which implies that the interaction is essentially multiparticle.

Regions III (VII and VIII) correspond to Coulomb (Yukawa) ideal gases. The range of dust-dust interaction is smaller than the intergrain distance and only pair collisions are important. In addition, in the region VIII the pair Yukawa interaction asymptotically reduces to the hard sphere limit, forming a “Yukawa granular medium”. In region IV the electrostatic interaction is unimportant and the system is like a usual granular medium.
REFERENCES

When any of the formulas and data in this collection are referenced in research publications, it is suggested that the original source be cited rather than the *Formulary*. Most of this material is well known and, for all practical purposes, is in the “public domain.” Numerous colleagues and readers, too numerous to list by name, have helped in collecting and shaping the *Formulary* into its present form; they are sincerely thanked for their efforts.

Several book-length compilations of data relevant to plasma physics are available. The following are particularly useful:

The books and articles cited below are intended primarily not for the purpose of giving credit to the original workers, but (1) to guide the reader to sources containing related material and (2) to indicate where to find derivations, explanations, examples, etc., which have been omitted from this compilation. Additional material can also be found in D. L. Book, NRL Memorandum Report No. 3332 (1977).

27. References to experimental measurements of branching ratios and cross sections are listed in F. K. McGowan, et al., Nucl. Data Tables A6, 353 (1969); A8, 199 (1970). The yields listed in the table are calculated directly from the mass defect.

28. (a) G. H. Miley, H. Towner and N. Ivich, Fusion Cross Section and Reactivities, Rept. COO-2218-17 (University of Illinois, Urbana, IL, 1974); B. H. Duane, Fusion Cross Section Theory, Rept. BNWL-1685 (Brookhaven National Laboratory, 1972); (b) X.Z. Li, Q.M. Wei, and B. Liu, “A new simple formula for fusion cross-sections of light nuclei,” Nucl. Fusion 48, 125003 (2008).

30. See, for example, A. B. Mikhailovskii, Theory of Plasma Instabilities

31. Table prepared from data compiled by J. M. McMahon (personal communication, D. Book, 1990) and A. Ting (personal communication, J.D. Huba, 2004).

AFTERWORD

The NRL Plasma Formulary originated over thirty five years ago and has been revised several times during this period. The guiding spirit and person primarily responsible for its existence is Dr. David Book. I am indebted to Dave for providing me with the \TeX files for the Formulary and his continued suggestions for improvement. The Formulary has been set in \TeX by Dave Book, Todd Brun, and Robert Scott. I thank readers for communicating typographical errors to me as well as suggestions for improvements.

Finally, I thank Dr. Sidney Ossakow for his support of the NRL Plasma Formulary during his tenure as Superintendent of the Plasma Physics Division. He was a steadfast advocate of this important project at the Naval Research Laboratory.